
Pedro Nuno de Souza Moura

LSHSIM: A Locality Sensitive Hashing Based
Method for Multiple-Point Geostatistics

Tese de Doutorado

Thesis presented to the Programa de Pós-Graduação em In-
formática of the Departamento de Informática, PUC-Rio, as par-
tial fulfillment of the requirements for the degree of Doutor em
Ciências – Informática.

Advisor: Prof. Eduardo Sany Laber

Rio de Janeiro
September 2017

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

Pedro Nuno de Souza Moura

LSHSIM: A Locality Sensitive Hashing Based
Method for Multiple-Point Geostatistics

Thesis presented to the Programa de Pós-Graduação em In-
formática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências – Informática. Approved by
the undersigned Examination Committee.

Prof. Eduardo Sany Laber
Advisor

Departamento de Informática — PUC-Rio

Prof. Hélio Côrtes Vieira Lopes
Departamento de Informática — PUC-Rio

Prof. Sinésio Pesco
Departamento de Matemática — PUC-Rio

Prof. Artur Alves Pessoa
UFF

Prof. Alexandre Anozé Emerick
Petroleo Brasileiro – Rio de Janeiro – Matriz

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Cient́ıfico da PUC-Rio

Rio de Janeiro, September 21th, 2017

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

All rights reserved.

Pedro Nuno de Souza Moura

Bachelor’s in Information Systems at the Federal University
of the State of Rio de Janeiro (2008). Masters’ in Informatics
at the Pontifical Catholic University of Rio de Janeiro (2011),
with emphasis in Combinatorial Optimization.

Bibliographic data

Moura, Pedro Nuno de Souza

LSHSIM: A Locality Sensitive Hashing Based Method for
Multiple-Point Geostatistics / Pedro Nuno de Souza Moura ;
advisor: Eduardo Sany Laber. — 2017.

93 f. : il. ; 30 cm

Tese (Doutorado em Informática)-Pontif́ıcia Universidade
Católica do Rio de Janeiro, Rio de Janeiro, 2017.

Inclui bibliografia

1. Informática – Teses. 2. Geoestat́ıstica Multiponto; Lo-
cality Sensitive Hashing ; Run-Length Encoding ; Modelagem
de Padrões; Imagem de Treinamento. I. Laber, Eduardo Sany.
II. Pontif́ıcia Universidade Católica do Rio de Janeiro. Depar-
tamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

Acknowledgments

First and foremost, I would like to thank God for giving me strength to

face the challenges and the difficulties of a phd course.

I dedicate this conquest to my grandmother Carmen for her endless love

and for always being by my side in my moments of study.

I would also like to dedicate to my parents, Mário and Fernanda, for

teaching me the importance of studying and for staying there whenever I

needed. Besides, I want to thanks my grandmother Maria de Lourdes, who

gave me so much strength even though she was far away from Brazil.

To my brother Fernando, for all support and aid during this process.

To my beloved Nati, for all support during this process. Thanks for

showing me the biggest example of complicity I’ve ever seen. I love you!

To my advisor Prof. Eduardo Laber, for not only teaching me how to be

a researcher, but also for all knowledge passed. Honestly, I cannot think of a

better advisor.

To Prof. Hélio Lopes, for introducing me to the field of Geostatistics, for

the valuable contributions and for creating the SIMPAD project in which this

research was born.

To Prof. Marcus Poggi, for all support and guidance during my Master’s

degree and the beginning of the PhD course. In addition, I would also like to

thank you for the opportunity of working in Gapso (now Accenture).

To Prof. Amâncio, Prof. Luiz Pedro Jutuca and Profa. Simone from

UNIRIO for encouraging me to follow an academic trajectory since the

beginning. To Prof. Alexandre Andreatta for teaching me so many things in

the undergraduate course and being a professor to whom I look up to.

To Prof. Tanaka, Geiza, Adriana, Beto, Morganna, Mariana, Flávia,

Renata, Kate, Leila, Leo Azevedo, Leo Rocha, Márcio, Sean, Sidney, Jefferson,

Vânia, Bruno, Helóısa, Alessandra, Douglas, Leandro, Ivana, Neide and all

workers from UNIRIO, for the day by day company.

To all my colleagues from Galgos laboratory, for sharing moments of not

only work, but also joy and happiness. To João, Chico, Lucas, Daniel Mesejo

and Gabriel for participating and contributing to this research in so many

moments. Your aid and hard work were essential for the implementation of

this research.

To my students Thiago Albuquerque, Daniel Villaça and Renard from

UNIRIO who became great friends and with whom I always great moments.

To my great friends from the gym, André and Demétrius, for the so many

moments of joy and for always pushing me to seek to be a better person.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

To my friends Felipe e Gabriel, for always being there through the years

in my life. Your support was essential for the accomplishment of this work.

To my friends Igor, Marcelo e Jorge for the amazing conversations

through the days that helped me a lot in this process. Also to Victor and

Mateus for so many moments of happiness, although we live far apart.

To my friends Luanna and Anne for always being willing to listen to me

and help me in the most varied situations.

To Fathers Lee and Alexandre Pacioli for the spiritual guidance in this

process.

To CNPq for the conceded scholarship in the beginning of the PhD course

and to CAPES for later paying the taxes of the course.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

Abstract

Moura, Pedro Nuno de Souza; Laber, Eduardo Sany (advisor). LSHSIM:
A Locality Sensitive Hashing Based Method for Multiple-
Point Geostatistics. Rio de Janeiro, 2017. 93p. Tese de Doutorado —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Reservoir modeling is a very important task that permits the

representation of a geological region of interest. Given the uncertainty involved

in the process, one wants to generate a considerable number of possible

scenarios so as to find those which best represent this region. Then, there is

a strong demand for quickly generating each simulation. Since its inception,

many methodologies have been proposed for this purpose and, in the last two

decades, multiple-point geostatistics (MPS) has been the dominant one. This

methodology is strongly based on the concept of training image (TI) and the

use of its characteristics, which are called patterns. In this work, we propose a

new MPS method that combines the application of a technique called Locality

Sensitive Hashing (LSH), which permits to accelerate the search for patterns

similar to a target one, with a Run-Length Encoding (RLE) compression

technique that speeds up the calculation of the Hamming similarity. We

have performed experiments with both categorical and continuous images

which showed that LSHSIM is computationally efficient and produce good

quality realizations, while achieving a reasonable space of uncertainty. In

particular, for categorical data, the results suggest that LSHSIM is faster than

MS-CCSIM, one of the state-of-the-art methods.

Keywords
Multiple-Point Geostatistics; Locality Sensitive Hashing; Run-Length

Encoding; Pattern Modeling; Training Image

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

Resumo

Moura, Pedro Nuno de Souza; Laber, Eduardo Sany. LSHSIM: Um
Método de Geoestat́ıstica Multiponto Baseado em Locality
Sensitivity Hashing . Rio de Janeiro, 2017. 93p. Tese de Doutorado
— Departamento de Informática, Pontif́ıcia Universidade Católica do
Rio de Janeiro.

A modelagem de reservatórios consiste em uma tarefa de muita relevância

na medida em que permite a representação de uma dada região geológica

de interesse. Dada a incerteza envolvida no processo, deseja-se gerar uma

grande quantidade de cenários posśıveis para se determinar aquele que melhor

representa essa região. Há, então, uma forte demanda de se gerar rapidamente

cada simulação. Desde a sua origem, diversas metodologias foram propostas

para esse propósito e, nas últimas duas décadas, Multiple-Point Geostatistics

(MPS) passou a ser a dominante. Essa metodologia é fortemente baseada no

conceito de imagem de treinamento (TI) e no uso de suas caracteŕısticas, que

são denominadas de padrões. No presente trabalho, é proposto um novo método

de MPS que combina a aplicação de dois conceitos-chave: a técnica denominada

Locality Sensitive Hashing (LSH), que permite a aceleração da busca por

padrões similares a um dado objetivo; e a técnica de compressão Run-Length

Encoding (RLE), utilizada para acelerar o cálculo da similaridade de Hamming.

Foram realizados experimentos com imagens de treinamento tanto categóricas

quanto cont́ınuas que evidenciaram que o LSHSIM é computacionalmente

eficiente e produz realizações de boa qualidade, enquanto gera um espaço

de incerteza de tamanho razoável. Em particular, para dados categóricos, os

resultados sugerem que o LSHSIM é mais rápido do que o MS-CCSIM, que

corresponde a um dos métodos componentes do estado-da-arte.

Palavras-chave
Geoestat́ıstica Multiponto; Locality Sensitive Hashing ; Run-Length En-

coding ; Modelagem de Padrões; Imagem de Treinamento

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

Contents

1 Introduction 13
1.1 Motivation 13
1.2 Problem Statement 17
1.3 Objective 20
1.4 Organization 21

2 Related Work 22
2.1 Multiple-Point Geostatistics 22
2.2 Compression Techniques for Calculating Convolutions 28

3 Background 30
3.1 Convolution 30
3.2 Compression 30
3.3 Some Concepts of Graph Theory 32
3.4 Distance Measures 33
3.5 Locality Sensitive Hashing 36

4 Compression Techniques for Computing Convolutions 40
4.1 Methods 40
4.2 Experimental Study 51

5 LSHSIM 55
5.1 Method 55
5.2 Experimental Study 63

6 Conclusions 87
6.1 Final Considerations 87
6.2 Future Works 88

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

List of Figures

1.1 Two 3D realizations of Object-based channels with facies, con-
ditional to the available well data and input statistics (Pyrcz &
Deutsch, 2014). 14

1.2 Two 3D porosity realizations for the facies simulation of Figure 1.1,
honoring the wells and input distributions. (Pyrcz & Deutsch, 2014). 15

1.3 A 3D permeability realization cosimulated with the first porosity
realization of Figure 1.2 (Pyrcz & Deutsch, 2014). 15

1.4 History match to the flow data fw (Caers, 2002). 16
1.5 The Strebelle training image. 18
1.6 General structure of a pattern-based approach. 19
1.7 Two realizations of the Strebelle TI of 250 × 250: (A) setting

template size to 10×10 and (B) setting template size set to 50×50. 20

2.1 Multi-scale approach (Tahmasebi et al., 2014). 25
2.2 Raster path strategy (Tahmasebi et al., 2014). 25

3.1 A multigraph with an Eulerian path. 32
3.2 A weighted graph (A) and its minimum spanning tree (B). 33
3.3 A Hamiltonian path (A) and a Hamiltonian path with low cost (B). 34
3.4 A minimum weighted perfect matching. 34
3.5 Illustration of the LSH concept for distance measures. 37
3.6 Illustration of the LSH scheme for Euclidean distance (adapted from

Leskovec et al. (2014)). 39

4.1 An example training image and its blocks of size 3× 3 denoted by
its position in the linear order. 42

4.2 Compressed blocks Bk obtained with RLE method to blocks Bk of
Figure 4.1. 43

4.3 The left training image is better compressed using a horizontal scan
while the right one is better compressed using a diagonal scan. 44

4.4 Graph G2 obtained for the example of Figure 4.1 and a hamiltonian
path with low cost highlighted in red. 47

4.5 A continuous horizontal scan (A) and a continuous vertical scan (B). 48
4.6 Compressed blocks Bk obtained with LZ method to blocks Bk of

Figure 4.1. 49
4.7 Training images used for compression experiments: available in

(TrainingImagesLibrary, 2016). 51

5.1 General structure of LSHSIM. 57
5.2 Preprocessing phase of LSHSIM. 58
5.3 Search phase of LSHSIM. 58
5.4 An example TI, a possible pattern P and a data event D. 60
5.5 Two patterns, their overlap regions and obtained minimum bound-

ary cut. 62
5.6 Comparison of a näıve pasting and a pasting employing MEBC. 63

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

5.7 Training images adopted in our experiments: available in
(TrainingImagesLibrary, 2016). 64

5.8 Unconditional realizations for the TI of Fig. 5.7 (A): using LSHSIM
(A), using MS-CCSIM with 3 scales (B) and using MS-CCSIM with
1 scale (C). 69

5.9 Unconditional realizations for the TI of Fig. 5.7 (B): using LSHSIM
(A), using MS-CCSIM with 3 scales (B) and using MS-CCSIM with
1 scale (C). 70

5.10 Unconditional realizations for the TI of Fig. 5.7 (D): using LSHSIM
(A), using MS-CCSIM with 3 scales (B) and using MS-CCSIM with
1 scale (C). 71

5.11 Unconditional realizations using LSHSIM for continuous data: the
Stonewall TI (A) and two generated realizations (B) and (C). 71

5.12 Unconditional realizations using LSHSIM for 3D data: for the
Checker TI (A), for the Fold Categorical TI (B) and for the
Maules Creek TI (C). 72

5.13 Unconditional realizations using LSHSIM for 3D data: for the
Checker TI (A), for the Fold Categorical TI (B) and for the
Maules Creek TI (C). 72

5.14 MDS plot illustrating the variability of LSHSIM and MS-CCSIM
methods by using the TI in Fig. 5.7 (A). 73

5.15 MDS plot exposing the variability of both methods by using the TI
in Fig. 5.7 (C). 74

5.16 Strebelle TI (A) and selected conditioning points (B). 74
5.17 Three conditional realizations for the Strebelle TI honoring the

conditioning points from Figure 5.16. 75
5.18 Ensemble average obtained for 100 conditional realizations. 76
5.19 Realization time in milliseconds obtained as α varies. 77
5.20 Number of candidates per query obtained as α varies. 77
5.21 Examples of realizations performed setting α to the following

values: 0.05% (A), 0.5% (B) and 10% (C). 78
5.22 Preprocessing time in milliseconds obtained as L varies. 79
5.23 Realization time in milliseconds obtained as L varies. 79
5.24 Number of candidates per query obtained obtained as L varies. 80
5.25 Realization time in milliseconds obtained as L varies having α = 10%. 80
5.26 Number of candidates per query obtained as L varies having α = 10%. 81
5.27 Examples of realizations performed setting L to the following

values: 1 (A), 30 (B) and 50 (C). 82
5.28 Preprocessing time in milliseconds obtained as K varies. 83
5.29 Realization time in milliseconds obtained as K varies. 83
5.30 Number of candidates per query obtained obtained as K varies. 84
5.31 Realization time in milliseconds obtained as K varies having α = 10%. 84
5.32 Number of candidates per query obtained as K varies having

α = 10%. 85
5.33 Examples of realizations performed setting K to the following

values: 1 (A), 10 (B) and 20 (C). 86

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

List of Tables

3.1 Example of application of the LZ method to a given input sequence. 32

4.1 Main features of the images used for the experimental study 51
4.2 Compression ratio of images in percentage values. For LZ (RLE)

based methods the compression ratio is given by the number of
factors (run lengths) per block over m2 53

4.3 Time for calculating 500 convolutions in seconds. 54

5.1 Main properties of the images used for the experimental study. 65
5.2 Average realization time in milliseconds for 2D categorical images. 66
5.3 Preprocessing time in milliseconds for 2D categorical images. 67
5.4 Preprocessing and realization times in milliseconds for continuous

image. 67
5.5 Preprocessing and realization times in seconds for 3D images. 68
5.6 Preprocessing and realization times in milliseconds for conditional

simulations. 75

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

Pain is temporary. It may last a minute, or
an hour, or a day, or a year, but eventually
it will subside and something else will take its
place. If I quit, however, it lasts forever.

Lance Armstrong

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

1
Introduction

1.1
Motivation

Geostatistics was conceived as a discipline developed by researchers when

facing with real problems and searching for a consistent set of numerical tools

that would help them address these problems (Pyrcz & Deutsch, 2014). The

reasons that led to this are: an increasing number of data to deal with, a need

to address problems with consistent and reproducible methods, among others.

On top of everything, a major reason was the fact that more reliable and

profitable decisions would be made with improved numerical models (Pyrcz

& Deutsch, 2014). A central point, then, was the uncertainty involved in this

decision-making process.

One of the tools provided by geostatistics for modeling spatial phenomena

is the stochastic conditional simulation. The stochastic simulation aims to

create multiple, realistic representations, termed realizations, of a studied

spatial phenomenon, that are constrained (conditioned) to any available data

(Arpat & Caers, 2007).

Stochastic simulation permits to generate multiple realizations to jointly

represent the model uncertainty, where each realization reproduces the spe-

cified input statistics and well data. Figure 1.1 exhibits two three-dimensional

realizations of size 1 km × 1 km × 20 m generated by an Object-based model

(Caers, 2011), in which the channels and associated facies (types of rock) fills

are shown. In this example, the channels correspond to the sinuous objects

and each facie corresponds to a different colour in model.

Once these realizations defining the facies architecture are generated,

some reservoir properties such as porosity and permeability can be simulated.

The simulation work flow reproduces the representative porosity and permeab-

ility distributions along with their spatial continuity and associated uncertainty

(Pyrcz & Deutsch, 2014). Figure 1.2 illustrates two three-dimensional porosity

realizations of size 1 km × 1 km × 20 m for the facies simulations of Figure

1.1, honoring the well data and input distributions. In each realization, col-

ours close to red indicate high porosity, while values close to blue denote low

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 14

Figure 1.1: Two 3D realizations of Object-based channels with facies, condi-
tional to the available well data and input statistics (Pyrcz & Deutsch, 2014).

porosity. This gives a perspective of the reservoir quality across facies along

with the spatial continuity.

The permeability property may also be simulated. This property has a

relationship with porosity within each facies and can be conditioned to any

permeability information available along the wells (Pyrcz & Deutsch, 2014).

Figure 1.3 illustrates a permeability realization cosimulated with the first

porosity realization of Figure 1.2, where colours close to red indicate high

permeability values and colours close to blue indicate low permeability values.

Production data, i.e., the real measurements of extracted oil from a given

reservoir, brings important information about the spatial distribution of that

reservoir variables. However, it rarely suffices to characterize heterogeneous

reservoirs and a large amount of uncertainty still remains after the history

matching of geostatistical models (Caers, 2002). In other words, the production

data give information until some instant T in time, after which there is

uncertainty. In this way, one desires to forecast how the production would

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 15

Figure 1.2: Two 3D porosity realizations for the facies simulation of Figure
1.1, honoring the wells and input distributions. (Pyrcz & Deutsch, 2014).

Figure 1.3: A 3D permeability realization cosimulated with the first porosity
realization of Figure 1.2 (Pyrcz & Deutsch, 2014).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 16

be after this point in time.

After simulating porosity and permeability, each realization is submitted

to a flow simulator, so as to obtain the dynamic response, which is its

production curve (or fractional flow) estimated from a time instant 0 and up to

some point in time much later than T . These production curves are compared

to the real production curve in the interval [0, T] and the associated realizations

are modified in an iterative process, until their production curves fit to the

real production curve in that interval. For example, Figure 1.4 illustrates this

fact, where a finite difference simulator was used to converge the fractional

flow obtained for some simulated scenarios to the target reference production

(Caers, 2002).

Figure 1.4: History match to the flow data fw (Caers, 2002).

At this point, from all generated realizations, one can make production

forecast and thus some specific realizations are selected as representatives,

which typically correspond to percentile models: the P10 model, such that

10% of the model responses are lower than this model; the P50 model, which

corresponds to the median model, such that 50% of the models have smaller

response and 50% have higher response; and the P90, such that only 10% of the

model responses are higher than this one. In sum, these selected representatives

are used to forecast the produced oil and support the decision-making process.

Therefore, the final product is an uncertainty model for reservoir response,

given the exploitation method (Pyrcz & Deutsch, 2014).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 17

One important entity in this process is the investor (or sponsor), which is

the one who is paying and investing to extract oil from a given geological region.

He has great expectation in performing a good forecast of the production

and minimizing the risk associated with it, so as to obtain a high return on

investment (ROI). Therefore, the financial impact plays a major role in this

kind of study.

1.2
Problem Statement

In the last few decades, multiple-point geostatistics (MPS) became very

popular. It provides a variety of techniques to model and simulate facies

scenarios of reservoirs for a given geological region. MPS was born out of a need

to address the issue of lack of physical reality as well as the lack of control in the

simulated fields in traditional modeling (Mariethoz & Caers, 2014). Besides, in

contrast to traditional parametric techniques based on variogram, which make

use of two points statistics, MPS is non-parametric and based on higher-order

statistics to describe complex structures. It generates less artificial simulations,

having more realistic geological characteristics (Mariethoz & Caers, 2014).

The source of these statistics and a fundamental concept in this area is the

training image (TI), which typically represents a specific geological region of

interest. The goal of MPS is to mimic physical reality and the vehicle to achieve

this is the TI (Mariethoz & Caers, 2014). The TI is usually a hand draw made

by a specialist, such as a geologist, or obtained by the application of another

type of technique, such as a Boolean model realization (Caers, 2011). Figure

1.5 exhibits an example of training image, which is the Strebelle TI (Strebelle,

2002), where the white stripes represent sand channels (good reservoir quality)

and black pixels represent the background with poor reservoir quality.

The aim is to generate simulations following the geometry of facies

associations seen in the TI while honoring specific constraints related to

reservoir data (Chilès & Delfiner, 2012). In fact, these constraints correspond

to real measurements (a.k.a. hard data) made in the regions of interest using

some suitable equipment. When the hard data are not used/available, the

process is called unconditional; otherwise, it is called conditional and every

realization must honor these data.

The first methods in literature were based on simulating each pixel (or

node) of the realization, while more recent ones follow an approach that

is called pattern-based, because it is highly focused on the extraction and

reproduction of a contiguous group of pixels from the TI.

In the geostastitical field, Zhang et al. (2006) and Arpat & Caers (2007)

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 18

Figure 1.5: The Strebelle training image.

were the first to propose working with patterns. Generally, in a pattern-based

MPS approach, a realization (scenario) is built through the execution of a loop

where the two following steps are performed several times: (i) a location of a

certain size/shape of the realization under construction is selected; (ii) this

location is replaced with a similar pattern of the same size/shape from the TI.

The locations selected from the realization are known in the MPS literature

as data events. The similarity between patterns and data events is defined

according to some similarity/distance measure (e.g. Euclidean distance) (Arpat

& Caers, 2007).

The Figure 1.6 illustrates this process by considering a TI containing

black and white facies. From left to right, it shows a realization, a data event

defined at a given location and its comparison with patterns of the TI. One of

these patterns is chosen and pasted at that location. Note that blue values in

realization correspond to regions that are not yet filled.

In a simulation, the size of the patterns/data events considered is known

in the MPS literature as template size. For example, the template size adopted

in Figure 1.6 was 5 × 5. In addition, Figure 1.7 shows two realizations of

250×250 pixels for the TI in Figure 1.5 where the template size varied. In (A)

the template size was set to 10 × 10 and in (B) it was defined to 50 × 50. It

can be noted that the realization (A) using the smaller template size was too

attached to small features of the TI and did not express well its characteristics,

while the simulation (B) using the bigger template size was able to capture

the image’s spatial continuity.

In typical applications where MPS is employed, a large number of

realizations has to be generated, so that the time taken to perform each one

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 19

Figure 1.6: General structure of a pattern-based approach.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 20

Figure 1.7: Two realizations of the Strebelle TI of 250 × 250: (A) setting
template size to 10× 10 and (B) setting template size set to 50× 50.

should be as low as possible. Nevertheless, the quality of these realizations

should also be good, in the sense that they should reproduce well the TI’s

spatial continuity. In addition, these simulations should have variability, so

that a reasonable space of uncertainty is covered. These three components

constitute the objectives that a MPS method should pursue.

This is a very sensitive problem and a central point when performing

a geostatistical study. Therefore, this motivates the study and application of

new algorithmic techniques to speed up the process, while also addressing the

quality and variability requirements.

1.3
Objective

The objective of this work is to study and propose a pattern-based MPS

method that generates a great number of realizations as fast as possible, with

good quality and achieving a good variability.

For that, we first addressed the problem of searching for the most similar

patterns when performing a realization. We have carefully studied one of the

state-of-the-art methods regarding both computational time and quality, the

MS-CCSIM method (Tahmasebi et al., 2014), and verified that it calculates

convolutions via the Fast Fourier Transform (FFT) algorithm (Cooley &

Tukey, 1965) to search for the most similar patterns to a given data event.

In this sense, we proposed the use of compression techniques to accelerate the

computation of convolutions. We have performed an in-depth investigation

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 21

of the potential of Run-Length Encoding (RLE) and Lempel-Ziv (LZ) based

methods for efficiently calculating convolutions of patterns of a fixed size and

a given image. Our first contribution consists in developing new methods and

variants of existing ones for this purpose and providing (extensive) empirical

evaluations of the proposed methodologies. Our fastest method outperforms a

highly optimized implementation based on FFT for small patterns.

Our second and main contribution in this thesis is to propose LSHSIM,

a new method that generates realizations faster than MS-CCSIM. The key

innovations introduced by LSHSIM are the application of the Locality Sensitive

Hashing (LSH) technique to filter patterns similar to a given data event and the

use of the Run-Length Encoding (RLE) technique, to speed up the calculation

of similarity between patterns when the image is categorical. Our experimental

study suggests that our method produces realizations with similar quality in

almost one order of magnitude faster than MS-CCSIM. Besides, LSHSIM also

guarantees a good variability among the generated realizations.

1.4
Organization

This thesis is organized as follows: in Chapter 2, we present previous

related works, following their evolution since the inception of MPS, and discuss

in more details some methods which are part of the state of the art, specially

the MS-CCSIM method. In Chapter 3, we give some background that is

necessary for the understanding of our contributions, such as the concept

of convolution, some compression techniques and the LSH technique. Later,

in Chapter 4, we address our study with respect to the use of compression

techniques to speed up the calculation of convolutions as a way of searching

for the most similar patterns in a pattern-based MPS approach.

In Chapter 5, we introduce LSHSIM, describing each of its components

and discussing our computational experiments, where we compare LSHSIM

with MS-CCSIM regarding computational time, realization’s quality and vari-

ability. Besides, we also study the impact of conditioning in LSHSIM and

present a sensitivity analysis of the method concerning its parameters. Finally,

in Chapter 6 we present our final considerations and suggested future works.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

2
Related Work

In this chapter, we first present the related work regarding MPS. Then,

we present references with respect to compression techniques for calculating

convolutions.

2.1
Multiple-Point Geostatistics

The seminal work of Guardiano & Srivastava (1993) was the first one to

propose the use of MPS in the ENESIM method, while trying to simulate a

sandstone formed by alternating fine and coarser sediments. The simulations

obtained were more accurate than the ones generated by previous techniques

(Chilès & Delfiner, 2012). Despite its importance for the area, the method was

computationally slow, because it had to scan the whole TI for each new pixel

to be simulated.

In the SNESIM algorithm, Strebelle (2002) proposed the use of a search

tree, containing all possible training data events of a given size, to speed up the

computation. The tree was built scanning once the TI before performing the

simulations. What is more, it required an intensive use of computer memory

and it was restricted to categorical TIs.

The Direct Simulation method of Mariethoz et al. (2010) used a different

strategy: to simulate a pixel, it performed a random path through a fraction

of the TI and selected the first similar training event whose distance to the

conditioning data event was smaller than some defined threshold. In this way,

it avoided the drawback of SNESIM, since it did not require the storage of the

training data events in a tree data structure.

Following a pixel by pixel simulation, these methods had a difficulty

of reproducing the spatial continuity of the TI. This motivated the adoption

of pattern-based approaches, which lowered the computational time and im-

proved the quality of realizations, but introduced a new difficulty, the high

dimension of the patterns. The FILTERSIM method (Zhang et al., 2006) pro-

posed a clusterization based on image features, so as to cope with this issue. In

its turn, SIMPAT (Arpat & Caers, 2007) indexed in a list all possible patterns

in a TI.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 23

Honarkhah & Caers (2010) extended both works and proposed the

DISPAT method, in which they apply the Multidimensional Scaling (MDS)

technique (Borg & Groenen, 2005), so as to cope with the high dimensionality

of the patterns. Then, in this reduced dimension provided by MDS, the

clusterization is an easier task and they use the K-Means algorithm for this

purpose, after applying a kernel transformation to the data. Therefore, their

results are better than the previous SIMPAT method, regarding both quality

and CPU time.

In the CCSIM method, Tahmasebi et al. (2012) proposed the use of

the cross-correlation distance (convolution) in association with a raster path,

introducing thus the concept of overlap, which is the region shared by a data

event with previous simulated patterns of a realization. As an example, for the

data event shown in Figure 1.6, its non-blue values correspond to an overlap

area of size 2. They also claimed that the adopted distance captures better

the similarity between patterns and its calculation is performed in the spatial

domain, i.e., applying a naive convolution directly from the formula. In this

way, they were able to generate better simulations than previous methods.

Concerning the conditioning, the method performs sequential subdivisions in

the template size, so as to find a pattern honoring the hard data.

The work of Gardet et al. (2016) applied a K-Means technique to cluster

patterns and thus accelerate its search. It also proposes the use of a wavelet

decomposition to reduce the time required to compute distances, defining

a similarity measure over the decomposed patterns. They compared their

method with CCSIM and reported a wider variability, but a worse pattern

reproduction.

Recently, Abdollahifard (2016) proposed the FPSIM method which ex-

plores two points: (i) a new path strategy that prioritizes data-events placed in

the contour between the filled and empty regions of a realization; (ii) a search

scheme that is based on the gradient vector of the central pixel of data-events.

This search first compares this gradient vector with the gradient of each TI’s

pixel, in order to obtain a set of candidate patterns, and then performs a search

in this set using the Euclidean distance. The authors claim to reduce the search

space up to hundreds of times.

The search phase of LSHSIM, which will be explained in Chapter 5,

resembles that of FPSIM in the sense that it first filters patterns that are likely

to be similar to a given data event and then it looks for a good candidate in

the filtered set. Besides, the reduction on the search space can be controlled by

a parameter α. As an example, for the experiments with 2D categorical TIs,

to be presented in Chapter 5, we use α = 0.5%, which reduces the original

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 24

space of patterns by a factor of at least 200 and, hence, is comparable to the

reduction of hundreds of times reported in (Abdollahifard, 2016).

It is also worth mentioning that the evolution of methods belonging to

MPS has followed the same path as in the computer vision area, where it

is named as texture synthesis, such as described by the review of Mariethoz

& Lefebvre (2014). Some concepts brought to the MPS area were previously

proposed in the former. The main difference consists of the concept of hard

data, which does not exist in texture synthesis methods.

Lastly, the book of Mariethoz & Caers (2014) was the first one solely

dedicated to MPS, providing a survey of the area and explaining in details

the principal techniques used by methods published until 2014. Besides, it also

provides a library of training images (TrainingImagesLibrary, 2016), which we

have adopted in the experiments of our research.

In the next few subsections, we describe and discuss the relation of our

method with some of the state-of-the-art methods.

2.1.1
Review of the MS-CCSIM method

The MS-CCSIM (Tahmasebi et al., 2014) is an extension of the CCSIM

method for categorical variables that introduces two new ideas that accelerate

the search for a pattern and the convolution’s calculation: (i) the use of a

multi-scale approach, in which the TI is represented in increasingly different

resolutions and so the search space of a query is reduced; and (ii) the calculation

of the cross-correlation function in the frequency domain using the fast Fourier

transform (FFT) (Cooley & Tukey, 1965). Figure 2.1 illustrates the multi-

scale strategy, in which the FFT is only applied in the red dashed region of

each resolution, starting from the coarsest one, searching for the most similar

pattern to a given data event. In this sense, the method reduces its search

space, because it never applies the FFT to the whole original TI, applying to

coarser resolutions and later exploring only a fraction of the TI.

In addition to that, MS-CCSIM adopts a raster path, which starts from

a corner of the realization and fills it line by line, horizontally or vertically,

such as depicted by Figure 2.2. This strategy brings some problems when

dealing with hard data. For this reason, the method employs the idea of a

co-template, such as proposed by Parra & Ortiz (2011). It is a way of “looking

ahead”, trying to verify if there is some hard data lying ahead of the path. It

selects then training patterns whose co-patterns satisfy these constraints.

Another important issue brought by this method was the approach to

the patchiness problem, which typically brings discontinuities to generated

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 25

Figure 2.1: Multi-scale approach (Tahmasebi et al., 2014).

Figure 2.2: Raster path strategy (Tahmasebi et al., 2014).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 26

realizations. Aiming to deal with this question, it applies the technique of

minimum error boundary cut (MEBC), originally proposed in the Image

Quilting method by Efros & Freeman (2001), which was tailored for the texture

synthesis area. However, this approach has some limitations and this fact was

later discussed and addressed by Tahmasebi & Sahimi (2016a), who applied

a graph network formulation to this problem. Tahmasebi & Sahimi (2016b)

described some of the advantanges and disadvantages of raster path algorithms,

as well as other strategies for dealing with hard data, other than co-template.

Mahmud et al. (2014) also worked on this issue, proposing an extension of the

Image Quilting method to conditioning and to 3D images, while having other

similar characteristics to the CCSIM method.

2.1.2
Review of the GOSIM method

GOSIM proposed by Yang et al. (2016) is an optimization-based method

which uses the EM procedure to build a realization. It starts with a realization

R(0) obtained from a coarse representation of the Training Image and then it

obtains a sequence of partial realizations. To obtain the realization R(i + 1)

from the realization R(i) it executes a E step and a M step. The E step

consists of solving an approximate nearest neighbor problem (ANN) for each

data event D in the realization R(i). In other words, for each data event D, a

similar pattern (hopefully the most similar one) in the training image shall be

found.

To find these similar patterns, GOSIM runs the PatchMatch algorithm

proposed in Barnes et al. (2009). PatchMatch is a randomized procedure that

starts with a random guess of the most similar pattern in the TI for each data

event D in the realization R(i). Then, the algorithm refines the guess G(D) for

each D in R(i) by taking account the current guess of the neighbors of D in

R(i) and by performing an exponential search on the neighborhood of G(D).

The procedure is expected to converge after a few iterations. By an iteration

we mean the process of refining the current guess of the most similar pattern

for each data event D in R(i).

The PatchMatch does not apply, at least directly, to our proposal because

the approximate nearest neighbor (ANN) problem LSHSIM has to solve is

different than the one solved by GOSIM. In the E step of GOSIM, the set

of patterns for which we want to find the most similar patterns in the TI is

known beforehand – it is the set of patterns in the current realization R(i).

On the the other hand, in LSHSIM, the set of patterns for which we need to

find the most similar patterns in the TI is not known beforehand because they

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 27

are dynamically created during the raster path simulation. In fact, the i-th

pattern for which we need to solve the ANN depends on the solution of the

ANN for the patterns that are adjacent to the i-th pattern in the simulation.

This subtle but important difference prevents a direct use of the PatchMatch

in LSHSIM.

We shall remark, however, that the LSH technique could be used, instead

of PatchMatch, in the E step of GOSIM. Whether or not it would speed up

the process might be a topic for future research.

2.1.3
Review of the fast template matching in transform domain based method

In (Abdollahifard & Nasiri, 2017), Abdollahifard and Nasiri proposed

an approach to speed up template matching for MPS methods. The key idea

consists of calculating the similarity between data events and TI’s patterns

using a low dimension approximation of them. To accomplish this goal, each

pattern P of the TI is mapped into a new pattern P ′ via an orthonormal

transformation (e.g. discrete cosine transform - DCT). Then, only the m most

significant coefficients from P ′ are stored (the others are considered to be

0). The value of m shall be chosen to provide a significant reduction in the

dimension of the TI patterns without losing much information. This approach,

used in the preprocessing phase, has been widely used in the data compression

community.

The search for a pattern to replace a data event D in the simulation grid

has two steps: (i) D is mapped into a low dimension representation Dlow using

the same transformation employed for the TI patterns and (ii) an exhaustive

search in the set of low dimension TI patterns is performed to find the most

similar pattern to Dlow with respect to Euclidean distance. The number of

operations required in the search phase is proportional to Nm, where N is the

number of patterns in the TI and m is the chosen number of coefficients.

The approaches of Abdollahifard & Nasiri (2017) and LSHSIM are quite

different. The former does an exhaustive search in the set of low dimension

patterns while the latter does an optimized search (RLE based) in a subset of

the original patterns that are likely to be close to the data event. In common,

both use ideas that were originated in the data compression community.

Moreover, LSHSIM has a theoretical guarantee of finding, with high

probability, a pattern that is near to the given data event. As far as we

know there are no theoretical guarantees available for the search proposed

by Abdollahifard & Nasiri (2017). However, a theoretical guarantee could be

achieved if a random projection (Leskovec et al., 2014) is used rather than a

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 28

DCT.

In fact, we understand that (Abdollahifard & Nasiri, 2017) is much more

related with CCSIM (Tahmasebi et al., 2012) since both rely on efficiently

calculating convolutions. If a fast Fourier transformation (FFT) is employed,

as proposed in MS-CCSIM (Tahmasebi et al., 2014), CCSIM executes log k

operations per pattern/data event comparisons, where k is the number of

pixels of the data event. Thus, (Abdollahifard & Nasiri, 2017) is advantageous

with respect to CCSIM, in terms of speed, if m < log k can be chosen. In

terms of reproduction quality, CCSIM has the potential advantage of not losing

information.

2.2
Compression Techniques for Calculating Convolutions

We have investigated the use of compression techniques to speed-up the

calculation of convolution in the search for the most similar patterns.

Since convolutions arise in applications from different domains, a signific-

ant amount of research has been dedicated to develop efficient methods for its

computation. A naive method directly obtained from definition calculates the

convolution between a pattern P and a sequence S in O(|S||P |) time. By using

the celebrated fast Fourier transform (FFT) this complexity can be improved

to O(|S| log |P |) time (Cooley & Tukey, 1965). Some methods were proposed

to work on compressed data (Freschi & Bogliolo, 2010; Tanaka et al., 2013).

Motivated by applications in string matching, in (Freschi & Bogliolo,

2010), it is shown how to calculate the convolution between a pattern P and

a sequence S compressed with the LZ78 (Ziv & Lempel, 1978). The method

requires O(|S|+ |P |NS) time, where NS is the number of factors of the LZ78

decomposition of S. Our first LZ based method, to be presented in Chapter 4

can be seen as an extension of this one for 2D structures. In contrast to ours,

no empirical evaluation is presented in this paper.

In (Tanaka et al., 2013), it is discussed how to calculate the convolution

between a pattern P and a sequence S represented by a straight line program

(SLP) of length g. The relevance of SLP’s is because the output of different

compressing schemes can be seen as, or quickly transformed into, a SLP

(Rytter, 2003). Two methods are presented by Tanaka et al. (2013). The most

efficient one runs in O(min{|S| −α, |P |g)} log |P |) time, where α is a measure

of redundancy of the SLP’s with respect to substrings of length m. Both

methods output a data structure from which the i-th dot product (coordinate)

of the convolution vector can be retrieved in O(log |S|) time. Because the

decomposition given by LZ78 can be seen as a SLP, the authors claim that

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 29

this method is better in terms of time complexity than the one proposed in

(Freschi & Bogliolo, 2010). Again, no empirical evaluation is presented.

In (Simard et al., 1998), it is proposed a method for quickly approximat-

ing convolution’s computation. The particular case of this method, for binary

patterns/images, is exactly the calculation of a convolution on a run-length en-

coding representation. This paper presents some experiments comparing their

approach with the naive method. In this thesis, we have carried a deeper in-

vestigation of the potential of run-length encoding and we also proposed and

empirically explored non-trivial variations that yield to reasonable gains.

Lastly, we should also mention some researches on speeding up convo-

lution evaluation for some specific domains (Werman, 2003; Hassanieh et al.,

2012).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

3
Background

We discuss in this chapter some fundamental concepts that are required

to understand our work. We first define the concept of convolution and some

compression techniques used in our work for accelerating convolutions’ calcu-

lation. Moreover, we describe some graph theory concepts that we employed

in this research. Then, we define what is a distance measure and explain some

distances that are used by our method LSHSIM. Finally, we discuss how to

address the problem of finding similar patterns using LSH, explaining the LSH

scheme for both the Hamming similarity and the Euclidean distance. Those

acquainted with these concepts may skip this chapter.

3.1
Convolution

The convolution of two sequences A = (a0, . . . , an−1) and B =

(b0, . . . , bm−1), where n > m, of real numbers can be defined as a sequence

C = (c0, . . . , cn−m) of real numbers, where

ck =
m−1∑
i=0

ai+kbi, for k = 0, . . . , n−m. (3-1)

The computation of convolutions arises in many applications from differ-

ent areas as digital signal processing, image processing and string processing,

among others (Tanaka et al., 2013).

We have explored compression techniques for the fast computation of

convolutions, a topic that has been explored recently in the data compression

community motivated by applications in string matching (Tanaka et al., 2013;

Freschi & Bogliolo, 2010). This will be presented in Chapter 4.

3.2
Compression

The next subsections present two compression techniques used in our

research.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 31

3.2.1
Run-Length Encoding

The Run-Length Encoding (RLE) is a simple technique used for com-

pressing sequences that have many repetitions among consecutive symbols.

For this purpose, the method transforms each consecutive subsequence of the

same symbol into a pair, where the first value represents the number of re-

petitions and the second one denotes the symbol. For example, the sequence

1110000011 is compressed by the RLE method to (3, 1), (5, 0), (2, 1).

3.2.2
Lempel-Ziv

The Lempel-Ziv (LZ or LZ78) (Ziv & Lempel, 1978) is a method that

scans the input sequence and breaks it into factors, progressively building a

dictionary. It explores the internal repetitions of a sequence to compress it, so

that each entry in its dictionary is a factor f , which is the concatenation of a

previously encountered factor f ′ and a symbol v. The dictionary is previously

initialized with all the symbols of the alphabet. Let c be the compressed

sequence, which starts empty, and u be the uncompressed input sequence.

The method searches for the longest factor (subsequence) s in the dictionary

that matches u. It then adds to c a pointer to the entry s in the dictionary,

removes s from u and adds the concatenation of s and the next input symbol v

to the dictionary. After that, it repeats the same steps to the remaining input

u.

For instance, the application of the LZ method to the sequence

010010001000 of alphabet Σ = {0, 1} is as follows. The dictionary D is ini-

tialized with the symbols 0 and 1. The method starts scanning the input, finds

the subsequence 0 already in D and adds its concatenation with the next sym-

bol 1, i.e., the subsequence 01, to the dictionary D, removing 0 from the input.

The algorithm then finds 1 which is in D and adds 10 to it, removing 1 from

the input. After that, LZ finds 0 which is already in D, removes it from the

input and adds 00 to D. Finally, LZ finds 01 which is in D, removes it from

the input and adds 010 to the dictionary. LZ performs these steps until the

end of the input sequence. The obtained segmentation in factors of the original

sequence is: 0 − 1 − 0 − 01 − 00 − 010 − 00, where the symbol ‘-’ is used to

separate factors. Table 3.1 describes the evolution of the dictionary D and the

obtained factors as the input sequence is parsed step by step.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 32

Input Dictionary D Factors
010010001000 {0, 1}
10010001000 {0, 1, 01} 0
0010001000 {0, 1, 01, 10} 0− 1
010001000 {0, 1, 01, 10, 00} 0− 1− 0
0001000 {0, 1, 01, 10, 00, 010} 0− 1− 0− 01
01000 {0, 1, 01, 10, 00, 010, 000} 0− 1− 0− 01− 00

00 {0, 1, 01, 10, 00, 010, 000, 0100} 0− 1− 0− 01− 00− 010
{0, 1, 01, 10, 00, 010, 000, 0100} 0− 1− 0− 01− 00− 010− 00

Table 3.1: Example of application of the LZ method to a given input sequence.

3.3
Some Concepts of Graph Theory

For a multigraph G = (V,E), that is, a graph with repetitions of edges

allowed, an Eulerian path (or trail) is a path that visits every edge of G

exactly once. For example, the graph of Figure 3.1 has an Eulerian path, which

corresponds to: v4, v5, v2, v4, v1, v2, v3, v6, v5, v6.

Figure 3.1: A multigraph with an Eulerian path.

The next definitions assume a given weighted graph G = (V,E), where

there exists a weight function w : E → R+.

A minimum spanning tree (MST) T of G is a connected and acyclic

subgraph of G containing all its vertices and such that the
∑

e∈T w(e) is

minimum. Figure 3.2 illustrates a graph (A) and its minimum spanning tree

(B), where the edges which are part of the MST are highlighted in red.

A Hamiltonian path H = v1, v2, . . . , vn in G is a simple path that passes

through all vertices v ∈ V exactly once. A Hamiltonian path with low cost H

is one such that
∑

e∈H w(e) is minimum among all possible Hamiltonian paths.

Figure 3.3 (A) exhibits a Hamiltonian path for the example graph of Figure 3.2

(A), while Figure 3.3 (B) shows a Hamiltonian path with low cost. For both

(A) and (B), the edges that are part of the Hamiltonian path are highlighted

in red. An important known result is that if the edges of G satisfy the triangle

inequality, i.e., for every u, v, x ∈ V it is true that w(uv) ≤ w(ux) + w(xv),

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 33

Figure 3.2: A weighted graph (A) and its minimum spanning tree (B).

there exists a 1.5-approximation in polynomial time algorithm, which is known

as Christofides algorithm (Vazirani, 2001). We explore this fact in Chapter 4.

A matching in G is a set of edges M without common vertices. A

matching M is perfect if it matches all vertices of G. Typically, for weighted

graphs, we are interested in a minimum weighted perfect matching M , i.e., a

perfect matching such that
∑

e∈M w(e) is minimum among all possible perfect

matchings ofG. In this sense, Figure 3.4 illustrates a minimum weighted perfect

matching for the example graph of Figure 3.2 (A), where the selected edges

are highlighted in red.

3.4
Distance Measures

A distance measure is a function d(x, y) that takes two points in a space

as arguments and produces a real number, satisfying the following axioms

(Leskovec et al., 2014):

1. d(x, y) ≥ 0 (no negative distances)

2. d(x, y) = 0 iff x = y (distances are positive, except for the distance from

a point to itself)

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 34

Figure 3.3: A Hamiltonian path (A) and a Hamiltonian path with low cost
(B).

Figure 3.4: A minimum weighted perfect matching.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 35

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

In the next subsections, we review some distance measures that are used

throughout this work.

3.4.1
Lp-Norm Distance

The Lp-norm, for p ≥ 1, of a vector x = (x1, . . . , xn) is given by:

||x||p =

(
n∑

i=1

|xi|p
)1/p

Then, the Lp-norm distance, also called Minkowski distance, between two

vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined as:

||x− y||p =

(
n∑

i=1

|xi − yi|p
)1/p

For p = 1, the 1-norm distance corresponds to the Manhattan distance,

also called taxicab distance. For two vectors x, y in an n-dimensional real vector

space, such that x = (x1, . . . , xn) and y = (y1, . . . , yn), the Manhattan distance

is given by:

d(x, y) = ||x− y||1 = |x1 − y1|+ |x2 − y2|+ . . .+ |xn − yn|

=
n∑

i=1

|xi − yi|

For p = 2, we have the Euclidean distance, which is the distance measure

between two vectors in an n-dimensional Euclidean space. Given x, y ∈ Rn,

such that x = (x1, . . . , xn) and y = (y1, . . . , yn), the Euclidean distance is

defined as:

d(x, y) = ||x− y||2 =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

=

√√√√ n∑
i=1

(xi − yi)2

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 36

3.4.2
Hamming Distance

The Hamming distance was first proposed by Hamming (1950) in the

information theory context. It is a natural way to measure distance/similarity

among categorical data, specially for binary strings. Given two vectors x =

(x1, . . . , xn) and y = (y1, . . . , yn), the Hamming distance is defined as the

ratio between the number of coordinates in which x and y are different

and n. Conversely, the Hamming similarity corresponds to the ratio between

the number of coordinates where x and y match and n. For example, if

x = (a, b, b) and y = (a, c, b), then HammingDistance(x, y) = 1/3 and

HammingSimilarity(x, y) = 2/3.

3.5
Locality Sensitive Hashing

As mentioned in Chapter 2, one of the challenges to implement the

pattern-based approach is the high dimensionality of data. To address this

issue, we propose the application of the so called Locality Sensitive Hashing

(LSH).

In order to explain the technique, we first recall that a hash table is a

data structure that implements an associative array: given an object x, a hash

function h(·) is used to determine the position in the structure/array where

we can find information about x (see Cormen et al. (2009)).

The LSH was first proposed by Indyk & Motwani (1998) and Gionis et

al. (1999). We first explain the definition of LSH for similarity measures. Given

a set of elements S and a set of buckets B, a family H of functions h : S → B,

together with a probability distribution D over the functions in H, is a LSH

for a similarity measure s(·, ·) if, for any x, y ∈ S, we have

PrH[h(x) = h(y)] = s(x, y),

where the probability is taken according to the distribution D. This way similar

elements have a large probability to be assigned to the same bucket while non-

similar ones have a small probability.

We now present the definition of LSH for distance measures. Given S and

B as before, and c, R, p1, p2 real numbers, a family H of functions h : S → B is

called (R, cR, p1, p2)-sensitive for a distance measure d(·, ·) if, for any x, y ∈ S,

we have

– if d(x, y) ≤ R then PrH[h(x) = h(y)] ≥ p1

– if d(x, y) ≥ cR then PrH[h(x) = h(y)] ≤ p2

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 37

where the probabilities p1, p2 are considered with respect to the random choice

of a function h from the family H. A family is useful when p1 > p2.

In words, the functions h ∈ H associate each element of S with buckets

b ∈ B, depending on their distance. If x and y are close, they will be put

in the same bucket b with probability at least p1. On the other hand, if they

are far apart, they will be given the same bucket with probability at most p2.

Figure 3.5 illustrates this concept, where the close points are hashed to the

same bucket while the distant one is assigned to a different bucket.

Figure 3.5: Illustration of the LSH concept for distance measures.

One of the main applications of LSH is as a tool to address the Approx-

imate Nearest Neighbor (ANN) problem (Gionis et al., 1999). This problem

admits the following formulation:

Input. A set of points S, a query point q and a value ε > 0.

Output. A point p ∈ S such that s(q, p) ≥ (1− ε)s(q, S), where s(q, S) is

the similarity of q to its most similar point in S.

The ANN problem naturally arises in the context of pattern based

simulation since a key operation in this kind of simulation consists of finding

patterns that are (very) similar to a given data event.

To address the ANN problem, via the LSH approach, we have two phases:

– Preprocessing Phase. In this phase K hash functions are randomly

selected from H using the probability distribution D. Let h1, h2 . . . hK

be the chosen functions and h = h1h2 . . . hK be the function obtained

by the concatenation of these functions. Then, h is used to build a hash

table that maps each x ∈ S into a bucket h(x) ∈ B. This procedure is

repeated L times so that we end up with L hash tables, each of them

storing all the elements in S.

– Search Phase. Given a point q, we find its bucket/position in each one

of the L hash tables using the hash function h. Let Cq be the set of

points that are mapped to the same bucket of q in at least one of the

L hash tables. Then, we can either return an arbitrarily chosen point

in Cq or return the most similar element to q among those in Cq. The

latter possibility increases the chance of returning patterns that are more

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 38

similar to q but it is more expensive in terms of computational time.

Another possibility in the search phase is to return the most similar point

after inspecting some fraction of the points in Cq. This way we trade-off

between the quality of the returned point and the computational time.

By choosing the values of K and L properly it is possible to guarantee

a high probability of returning a point that is among the most similar to the

query q with respect to the similarity s(·, ·).

3.5.1
LSH for Hamming Similarity

Let S be a set of points in a n-dimensional space. In addition, for

i = 1, . . . , n, let hi : S 7→ R be a function that maps each x ∈ S into xi,

which is the i-th coordinate of x. A well known result in the theory of LSH

states that the family H = {h1, . . . , hn), together with a uniform distribution

D over H, is a LSH scheme for the Hamming similarity. This scheme is used

by LSHSIM for categorical images, so as to filter patterns that are similar to

a given data event.

3.5.2
LSH for Euclidean Distance

For continuous data, since the Hamming similarity does not apply, we

employ the Euclidean distance, which has been used in pattern-based methods

since the work of Arpat & Caers (2007).

In the LSH scheme for the Euclidean distance, each hash function h in the

family H is associated with a random line in the n-dimensional space. Given

a constant a, this line is divided into segments of length a, which correspond

to the buckets. Each x ∈ S is then projected onto the line and hashed to

the bucket concerning the segment in which it lies. Figure 3.6 illustrates this

concept, where two points at a given distance d, making an angle θ with the

random line, are projected onto different segments, thus hashed to different

buckets.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 39

Figure 3.6: Illustration of the LSH scheme for Euclidean distance (adapted
from Leskovec et al. (2014)).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

4
Compression Techniques for Computing Convolutions

In this chapter, we present our study regarding the use of compression

techniques for efficiently computing convolutions as a way of searching for the

most similar patterns in a pattern-based MPS approach.

In a pattern-based method, a fundamental step is the search in the TI for

the most similar patterns to a given data event, so that one of these patterns

is chosen and pasted in realization. This process was illustrated by Figure 1.6.

This motivated us to define the following problem:

Problem 4.0.1 Given an image I and a list of patterns P1, . . . , Pn, all of them

with the same dimension, the problem consists of computing the convolution

between I and each of these patterns, as fast as possible, with the constraint

that pattern Pi only becomes available after the convolution between I and Pi−1

has been computed.

Our application is mapped on the above problem as follows: I corresponds

to the training image, the patterns P1, . . . , Pn correspond to the data events

and the constraint on Pi is because Pi is extracted from the realization after

pasting the chosen pattern obtained by computing the convolution between

Pi−1 and I.

In our setting, n is usually very large so that it is worth to preprocess

the TI with the goal of speeding up the convolution time. Another important

aspect of our domain is that, for categorical TIs, each pixel may assume just a

few values (e.g. 2 or 3 values, called facies) so that these images are expected

to attain high compression rates and as a consequence they are suitable for

methods that make use of compression techniques for calculating convolutions.

We have performed an investigation of the potential of Run-Length En-

coding (RLE) and Lempel-Ziv (LZ) based methods for solving Problem 4.0.1.

Besides, we have also provided an experimental study of these methodologies.

4.1
Methods

In this section, we describe our methods for dealing with 2D TIs, but

they are also extensible to 3D TIs. First, we need to introduce some notation.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 41

Let I = {I(i, j)|0 ≤ i < w and 0 ≤ j < h} be a 2D image of dimension

w × h, where I(i, j) is the value of the pixel located at position (i, j) of

I. Moreover, let P = {P (i, j)|0 ≤ i < m and 0 ≤ j < m} be a square

pattern 1 of dimension m ×m, where P (i, j) is the value of the pixel located

at position (i, j) of P . Furthermore, let Bi,j be the block (subimage) of

I of dimension m × m whose left top pixel has indexes i and j, that is,

Bi,j = {I(p, q)|i ≤ p < i+m and j ≤ q < j +m}. Our goal is to compute the

matrix C = {C(i, j)|0 ≤ i < w −m+ 1 and 0 ≤ j < h−m+ 1}, where

C(i, j) =
m−1∑
p=0

m−1∑
q=0

P (p, q) · I(p+ i, q + j). (4-1)

In order to explain the methods it will be convenient to set a linear order

among the blocks of image I, among the entries of matrix C and also among

the pixels of pattern P . Let NumBlocks = (w−m+1)×(h−m+1) be the size

of the vector C and let w′ = w −m. Thus, Bk = Bbk/w′c,k mod w′ and C(k) =

C(bk/w′c, k mod w′), for k = 0, . . . , NumBlocks− 1 and P (k) = P (bk/mc, k
mod m), for k = 0, . . . ,m2 − 1. Figure 4.1 depicts an example training image

of size 4 × 4 and its blocks of size 3 × 3 denoted by its position in the linear

order, each one depicted by the red dashed region.

Our methods are split into two phases: the preprocessing phase and the

convolution phase. In the preprocessing phase, we produce a compressed image

IM, which is the concatenation of the compressed blocks BM0 , . . . ,BMNumBlocks−1,

where BMk is the compressed block obtained by compressing Bk through

methodM. Whenever the context is clear we dropM from BMk . Note that the

compressed image may be considerably larger than the original one but this

is not necessarily a problem since our main focus is to minimize convolution

time.

In the convolution phase, we compute the convolution C between each

pattern P and the compressed image IM by calculating the dot product

between P and each compressed block BMk .

4.1.1
RLE based convolution

To motivate this approach let us consider the computation of the dot

product between a sequence of run lengths R = {(3, 1), (2, 2), (4, 1), (1, 0)},
where the first value is the count and the second one is the data, and the

pattern P = (1, 2, 1, 2, 2, 1, 1, 0, 0, 1), over the alphabet Σ = {0, 1, 2}. Let S[i, j]

1Our methods naturally extend to other shapes but for the sake of a clean presentation
we focus on squares.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 42

Figure 4.1: An example training image and its blocks of size 3× 3 denoted by
its position in the linear order.

be the sum of the elements of the subsequence of P that starts at ith position

and ends at the jth position. Then,

R · P = S[0, 2]× 1 + S[3, 4]× 2 + S[5, 8]× 1 + S[9, 9]× 0

Note that S[i, j] = S[0, j] − S[0, i − 1] and that all S[0, i]’s can be

calculated through a single pass over P .

This example illustrates the fact that the dot product can be calculated

in time proportional to |R| + |P |. The method described below relies on this

simple idea.

Preprocessing Phase. For our simplest RLE based method, the block Bk
is the sequence of run lengths obtained by scanning the block Bk line by line

continuously. We use Bk(i).count and Bk(i).value to denote the counter and

the value associated with the i-th run length of block Bk, respectively. For

example, Figure 4.2 exhibits the compressed blocks Bk using the RLE method

following this continuous horizontal scan for the blocks Bk of size 3 × 3 of

Figure 4.1, where, for each run length, the first value represents the counter

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 43

and the second one represents the value.

Figure 4.2: Compressed blocks Bk obtained with RLE method to blocks Bk of
Figure 4.1.

Convolution Phase. To compute the convolution matrix C, we first prepro-

cess pattern P in O(m2) time so that each sum S[i, j] =
∑j

`=i P (`) can be

computed in constant time. Then, for each compressed block Bk we execute

the pseudocode in Algorithm 4.1.1 that runs in O(|Bk|) time and performs few

operations per run length processed.

Optimizing the scanning order. In the method described above, each

compressed block Bk is obtained by scanning Bk line by line. However, this is

not necessarily the best order to scan the blocks. Figure 4.3 shows two images,

the left one is suitable for a horizontal scan of the blocks while the right one

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 44

Algorithm 4.1.1: Pseudocode for RLE Convolution Phase

Result: Convolution matrix entry C(k)
1 RLEConvPhase (P , Bk)
2 off← 0
3 C(k)← 0
4 for i = 0, . . . ,m2 − 1 do
5 Compute S[0, i]
6 end for
7 for i = 0, . . . , |Bk| − 1 do
8 C(k)← C(k) + Bk(i).value× S[off, off + Bk(i).count−1]
9 off← off + Bk(i).count

10 end for
11 return C(k)

benefits more from a diagonal scan. Given that the complexity of the proposed

method is linear on the total number of run lengths of the compressed blocks,

a natural question that arises is: Which order of scanning minimizes the total

number of run lengths of the compressed blocks?

Figure 4.3: The left training image is better compressed using a horizontal scan
while the right one is better compressed using a diagonal scan.

This question can be formulated as a graph theoretical problem. In fact,

let G = (V,E) be a weighted complete undirected graph, where V = {(i, j)|0 ≤
i < m and 0 ≤ j < m}. Let (i1, j1) and (i2, j2) be two vertices in V that satisfy

either i1 < i2 or (i1 = i2) and (j1 < j2). The weight w(e) of the edge e that

connects (i1, j1) to (i2, j2) is given by:

|{Bk|0 ≤ k < NumBlocks and Bk(i1, j1) 6= Bk(i2, j2)}|

In words, w(e) is given by the number of blocks in I such that the pixels

located in positions (i1, j1) and (i2, j2) in these blocks have different values.

The following lemma presents important properties about the graph G.

Lemma 1 Let H be a Hamiltonian path in G and let cost(H) be the sum of

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 45

the weights of the edges of H. Then,

cost(H) +NumBlocks =
NumBlocks−1∑

k=0

|BH
k |,

where |BH
k | is the number of run lengths of the block obtained when Bk is

compressed with RLE following the scanning order H. Furthermore, the weights

of graph G satisfy the triangle inequality.

Proof : Given a RLE compression Bk of a block Bk, the number of run lengths

obtained by Bk corresponds to the number of times adjacent pixels in the

scanning order performed in Bk have different values, plus 1. For instance,

the sequence 0001100 scanned from left to right has two adjacent symbols

with different values and thus three run lengths in its RLE compression:

{(3, 0), (2, 1), (2, 0)}. A Hamiltonian path H defines a scanning order for

visiting all the pixels of the image’s blocks, and the cost w(e) of each edge

e ∈ H counts the number of times the vertices (pixels) of e have different

values for all the blocks. Then, cost(H) gives this number for all adjacent

vertices (pixels) of the path. Hence, the number of run lengths for compressing

all the image’s blocks following H corresponds to cost(H) plus NumBlocks

(one for each block).

We now prove that the graph G satisfies the triangle inequality. For this

purpose, it suffices to show that every block Bk satisfies the inequality and

then as a consequence the sum for all blocks will also satisfy. For each block

Bk, given vertices (pixels) vi, vj, vp ∈ V , it must hold that

diff(vi, vj) ≤ diff(vi, vp) + diff(vp, vj)

where diff(vi, vj) is equal to 1 if the vertices (pixels) vi and vj have the

same value in Bk and 0 otherwise. In this sense, we analyse the two possibilities:

– diff(vi, vj) = 0. In this case, as the right hand side of the inequality

cannot sum less than 0 by definition, the inequality holds;

– diff(vi, vj) = 1. In this case, since vi and vj have different values, either

diff(vi, vp) = 1, or diff(vp, vj) = 1, or both, since vp cannot have the same

value as vi and vj simultaneously. This makes the right hand side sum

at least 1 and the inequality also holds.

Therefore, each block Bk satisfies the triangle inequality. �

The above lemma motivates the scan of each block following the order

induced by a Hamiltonian path with low cost. The problem of finding the

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 46

minimum cost Hamiltonian path in graphs whose weights satisfy the triangle

inequality admits a 1.5-approximation in polynomial time through Christofides

algorithm (Vazirani, 2001). First, this algorithm constructs a minimum span-

ning tree T for G. Next, it calculates a minimum weighted perfect matching

M∗ for G[O], the subgraph of G induced the set of vertices O with odd de-

gree in T . Finally, it obtains a Hamiltonian path from an Eulerian path in

the graph induced by the edges in T ∪M∗. Because the computation of the

optimal matching is costly, we replaced it with a simple greedy heuristic that

constructs a matching M for G[O] by iteratively selecting an unmatched node,

say u, and adding an edge uv to M , where v is the unmatched node which is

closest to u in terms of Manhattan distance.

In addition, to reduce the computational time, we do not work with the

graph G but with a subgraph of G, namely Gd = (V,Ed), such that (i1, j1),

(i2, j2) ∈ V are connected by an edge in Gd if and only if

|i1 − i2|+ |j1 − j2| ≤ d

In words, two vertices are connected by an edge if and only if their

Manhattan distance (see Chapter 3) is less than d.

The motivation for this selection is to keep just the edges that correspond

to pixels that are close in the image I and, as a consequence, are more likely

to have the same value. Although the graph Gd does not satisfy the triangle

inequality, this is not a problem, since we can get the same approximation as

before with respect to the optimal solution to Gd, but using edges that are not

in Gd. Figure 4.4 exhibits the graph Gd obtained for the example binary TI

and its 4 blocks of size 3× 3 in Figure 4.1, using d = 2. For instance, the edge

e1 between vertices (0, 0) and (0, 1) has w(e1) = 0 since their pixels have the

same value in the 4 blocks. Conversely, the edge e2 between vertices (0, 0) and

(2, 0) has w(e2) = 4 since their pixels have different values in all the 4 blocks.

Lastly, a hamiltonian path with low cost is highlighted in red.

The graph Gd has m2 vertices and O(m2d2) edges. The Hamiltonian path

can be computed in O((w−m)(h−m)d2 +m2d2(w+h) +m4) time, where the

term ((w−m)(h−m)d2+m2d2(w+h)) is due to the time required to calculate

the weights of the edges and the term m4 is due to the matching computation.

Finally, we shall note that to use this approach, in the convolution phase,

we have to reorder the pattern under consideration according to the order

induced by the Hamiltonian path. This can be done in O(m2) time.

Multiple Scanning Orders. In the two methods presented so far the same

scanning order is employed for all blocks. A natural idea is to consider different

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 47

Figure 4.4: Graph G2 obtained for the example of Figure 4.1 and a hamiltonian
path with low cost highlighted in red.

scanning orders for different blocks. In fact, if we have k different orders

available we could use the most suitable one for each block. However, this

approach would have to be used with parsimony because at the convolution

phase we would have to pay O(km2) to reorder the current pattern according

to each of these k orders.

We could define a combinatorial optimization problem that asks for the

set of k scanning orders that yield to the most compressed image. Although we

do not carry on a deep investigation on this problem, we perform a preliminary

test on its potential by considering two natural orders: a continuous horizontal

scan and a continuous vertical, which are illustrated by Figure 4.5 (A) and

(B), respectively, for a pattern of size 4×4. The results are reported in Section

4.2.

4.1.2
Lempel-Ziv based convolution

The LZ based methods decompose each block Bk into a sequence of

factors and then they calculate the dot product between the given pattern and

the compressed block by adding the contributions of the dot products between

the factors and the corresponding subsequences of the pattern. Let P [i, j] be

the subsequence of P that starts at position i and ends at position j. The

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 48

Figure 4.5: A continuous horizontal scan (A) and a continuous vertical scan
(B).

key property behind the efficiency of these methods is that each factor f , by

construction, is a concatenation of a factor f ′ and a value v so that dot product

between a subsequence P [i, j] and f can be calculated in O(1) time if the dot

product between P [i, j − 1] and f ′ is known.

Our method employs a data structure D that consists of a set of

m2 dictionaries. Each entry of the i-th dictionary D(i) corresponds to a

subsequence that begins at position i of some block Bk. Let e be an entry

of D(i) and let s be the sequence associated with e. The entry e has four fields:

e.value, which is the value of the last pixel of the sequence s; e.len, the length

of s; e.parent, a pointer to the entry in D(i) associated with the prefix of s of

length |s| − 1; e.DotProduct, the dot product between s and the subsequence

of the pattern under consideration that starts at position i and has length |s|.
All these fields but DotProduct are filled in the preprocessing phase.

Preprocessing Phase. At this phase, we compress block B0 then block B1,

and so on, until block BNumBlocks−1. We parse Bk as follows: we keep a pointer

off, initially at position 0, for the beginning of the next subsequence of Bk

to be parsed. Then, we look for the largest subsequence of Bk that starts at

position off of Bk and matches an entry of D(off). Let e be such an entry

and let s be the matched subsequence. We add to the compressed block Bk
a pointer to entry e and, if the length of s does not exceed m2 − off, we

also add a new entry, say e′, to D(off). The fields of e′ are filled as follows:

e′.parent = e, e′.len = e.len + 1 and e′.value is filled with the value of the

pixel that succeeds s in Bk. Finally, we update the pointer off to off + |s|.
Figure 4.6 exhibits the compressed blocks Bk using the LZ method for the

blocks Bk of size 3× 3 of Figure 4.1, where the symbol ‘-’ is used to separate

the factors.

Convolution Phase. We compute the convolution by scanning each com-

pressed block Bk according to the pseudocode presented in Algorithm 4.1.2.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 49

Figure 4.6: Compressed blocks Bk obtained with LZ method to blocks Bk of
Figure 4.1.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 50

Algorithm 4.1.2: Pseudocode for LZ Convolution Phase

Result: Convolution matrix entry C(k)
1 LZConvPhase (P , Bk)
2 off← 0
3 C(k)← 0
4 for i = 0, . . . , |Bk| − 1 do
5 if Bk(i).DotProduct is not defined
6 Bk(i).DotProduct←
Bk(i).Parent.DotProduct + Bk(i).Value× P (off + Bk(i).len− 1)

7 end if
8 off← off + Bk(i).len
9 C(k)← C(k) + Bk(i).DotProduct

10 end for
11 return C(k)

This method also runs in O(|Bk|) time. However, it makes few more

operations than RLE per factor and, the most important, in contrast with

RLE, it does not access the memory sequentially because neither Bk(i) and

Bk(i).parent nor Bk(i) and Bk(i+1) are expected to be consecutive in memory.

With respect to the last statement recall that Bk(i) is a pointer to an entry in

the data structure D.

4.1.3
RLE+Lempel-Ziv

We propose a variation of the previous method in which the preprocessing

phase of this method has two subphases. In the first one, we compress each

block using RLE. In the second subphase, each compressed block is applied to

the LZ parsing previously explained. The main difference is that each factor in

the previous approach corresponds to a sequence of pixels and now each factor

corresponds to a sequence of run lengths. Each run length can be thought as

a pixel value.

The convolution phase is similar to the previous one except for the fact

that now we have to take into account that each entry of the data structure

corresponds to a sequence of run lengths rather than a sequence of values. This

adds some extra operations per factor processed but the running time of the

convolution phase is still linear on the number of factors of the compressed

image.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 51

4.2
Experimental Study

We carried on some experiments to evaluate the performance of our

methods. We used 6 images available in TrainingImagesLibrary (2016) that

are commonly used for studying simulation methods in geostatistics, which

are shown in Figure 4.7. Their main features are presented in Table 4.1. All

experiments were executed under the following settings of hardware/software:

Intel Core i7-4500U CPU @ 1.80 GHz running Windows 8 64 bits, with 8 GB

of memory. All codes were implemented in C++.

Figure 4.7: Training images used for compression experiments: available in
(TrainingImagesLibrary, 2016).

Image Dimensions Type
(A) Strebelle 250× 250 binary

(B) Bangladesh 768× 243 binary
(C) Sundarban 1750× 1200 binary
(D) C Wlticat 400× 400 ternary

(E) A wlreferencecat 300× 260 ternary
(F) Diagonal 100× 100 binary

Table 4.1: Main features of the images used for the experimental study

We investigate the behaviour of the following methods: Naive, RLE-

HS, HamPath, RLE-MO, LZ, RLE+LZ and Conv-FFT. Naive is the method

derived directly from equation (4-1). RLE-HS is the first method described in

Section 4.1.1 with a continuous horizontal scan. HamPath is the RLE based

method that uses an optimized scanning order constructed by our variation of

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 52

Christofides’ algorithm using the graph Gd, with d = 3. RLE-MO is also a RLE

based method that uses for each block the best order between the horizontal

and the vertical continuous one. LZ and RLE+LZ are, respectively, the first

and the second methods described in Section 4.1.2.

Conv-FFT is our convolution’s implementation based on the FFT. In its

preprocessing phase it transforms the image from spatial domain to frequency

domain. Its convolution phase works as follows: (i) it transforms a vector of

dimension w×h+(m−1)w+m, representing the pattern, from spatial domain

to frequency domain; (ii) it computes the product between the image and the

pattern in the frequency domain; (iii) it transforms the corresponding product

from frequency domain to spatial domain. For computing the FFT and its

inverse we used FFTW (Frigo & Johnson, 2005), a highly optimized library

available in (FFTW, 2015), with parameter FFTW MEASURE.

Table 4.2 shows the ‘compression ratio’ achieved by the preprocessing

phase of our compression based methods for m ∈ {20, 40}. For LZ (RLE)

based methods the ratio is given by the number of factors (run lengths) per

block divided by the size of each block. For all images, but Diagonal, the LZ

based methods clearly outperformed the RLE based ones. For binary images,

RLE+LZ was significantly better than LZ while for ternary images LZ was

slightly better than RLE+LZ. With respect to the RLE based methods, RLE-

HS was slightly better than HamPath for some cases (up to 6%) while for

others, as Sundarban and Diagonal images, HamPath managed to reduce in

up to 40% the number of run lengths. RLE-MO obtained a reduction, ranging

from 3% to 14%, on the number of run lengths with regard to HamPath for

all images but Diagonal. For the latter HamPath provided a reduction of more

than 35%.

Table 4.3 presents the convolution time for convolving 500 randomly

chosen square patterns of dimension m × m, with m ∈ {10, 20, 40}. Some

observations are in order:

– Naive was the slowest method, among all tested. As an example, Ham-

Path was 20 times faster than Naive, ranging from 3.4 times to 90 times.

With regard to RLE based methods, HamPath was significantly faster

than RLE-HS for Sundarban and Diagonal while for the other images

both presented similar performance, with a slight advantage for RLE-

HS. RLE-MO and HamPath presented similar results for all images but

for Diagonal, where the latter was clearly faster. It is worth mentioning

that the small advantage of RLE-MO in terms of compression ratio did

not translate into time savings, probably due to the overhead of dealing

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 53

Image Pattern size RLE-HS HamPath RLE-MO LZ RLE+LZ

Strebelle 20× 20 3.20 3.39 3.18 2.54 1.81

Strebelle 40× 40 2.99 3.10 2.99 2.87 2.09

Bangladesh 20× 20 4.76 4.86 4.50 2.65 1.98

Bangladesh 40× 40 4.52 4.68 4.47 2.97 2.38

Sundarban 20× 20 1.35 1.13 0.97 0.63 0.45

Sundarban 40× 40 1.19 0.93 0.84 0.66 0.36

C Wlticat 20× 20 16.46 16.62 15.66 6.31 6.41

C Wlticat 40× 40 16.33 16.42 15.88 6.51 6.77

A wlreferencecat 20× 20 24.55 23.41 22.45 9.36 9.64

A wlreferencecat 40× 40 23.97 22.87 22.44 9.50 9.97

Diagonal 20× 20 9.25 5.92 9.03 7.34 5.15

Diagonal 40× 40 9.33 5.35 9.13 8.53 6.37

Table 4.2: Compression ratio of images in percentage values. For LZ (RLE)
based methods the compression ratio is given by the number of factors (run
lengths) per block over m2

with more than one order. The results for RLE-MO and RLE-HS are

omitted in Table 4.3 for the sake of a clean presentation.

– The RLE based approach outperformed the LZ based one by a factor of

10, in average. Since all compression based methods run in linear time

on the number of factors/run lengths, one could have expected that the

LZ based methods would be the most successful ones. The advantage

of RLE approach, however, is because it accesses memory sequentially

while this does not happen with the LZ approach. This difference makes

the former much more efficient in terms of caching, which is translated

into significant time saving.

– The results obtained by the RLE approach are competitive with those

obtained by Conv-FFT. In general, for small patterns the former is

superior than the latter. The threshold in which Conv-FFT starts to

be advantageous depends on the dimension of the image and how

compressible it is. As an example, for Sundarban, the most compressible

image, HamPath is faster than Conv-FFT for patterns up to 100x100. On

the other hand, for A wlreferencecat, the least compressible one, Conv-

FFT outperforms both HamPath and RLE-HS for square patterns larger

than 10x10.

Although the minimization of preprocessing time was not the main focus

of our research, it cannot be prohibitive. In the experiments reported in Table

4.3, the preprocessing phase of HamPath, the slowest among RLE based

methods, was always faster (at least 15%) than its convolution phase for 500

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 54

Image Pattern size Naive HamPath LZ RLE+LZ Conv-FFT

Strebelle 10x10 6.17 0.469 0.984 0.688 3.16

Strebelle 20x20 22.7 1.05 8.17 7.19 3.08

Strebelle 40x40 76.5 2.45 42.8 46.9 3.5

Bangladesh 10x10 18.7 2.03 2.48 2.09 5.53

Bangladesh 20x20 71.4 4.50 32.5 32.2 10.9

Bangladesh 40x40 254 11.5 237 215 5.75

Sundarban 10x10 217 9.77 8.64 8.27 143

Sundarban 20x20 869 15.7 68 49 196

Sundarban 40x40 3458 38 702 389 261

C Wlticat 10x10 19.4 4.34 14.1 18.3 13.9

C Wlticat 20x20 65.8 11 117 130 8.98

C Wlticat 40x40 241 29.6 572 616 16.4

A wlreferencecat 10x10 8.3 2.42 9.05 13.6 3.28

A wlreferencecat 20x20 32.3 6.59 74.8 89.2 4.05

A wlreferencecat 40x40 111 17.6 359 404 3.92

Diagonal 10x10 1.13 0.109 0.234 0.219 0.531

Diagonal 20x20 3.17 0.188 1.45 1.73 0.609

Diagonal 40x40 6.89 0.281 7.41 10 0.672

Table 4.3: Time for calculating 500 convolutions in seconds.

patterns. When we have to convolve a large number of patterns (>> 500), as

in the case of the application that motivated Problem 4.0.1, the time required

for the preprocessing phase becomes almost negligible.

We conclude this chapter by mentioning that an heuristic that switches

between FFT and RLE based methods, depending on the image and the

dimension of the pattern, is the approach we recommend for efficiently solving

Problem 4.0.1.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

5
LSHSIM

We now present our proposed pattern-based MPS method which has two

central pillars: the LSH technique, described in Section 3.5, and an adaptation

of the RLE based search described in Section 4.1.1.

5.1
Method

Two points are often considered by pattern-based MPS methods available

in the literature: (i) the choice of the similarity measure and (ii) how to

efficiently find a pattern in the TI that is (very) similar to a given data event.

To address (i), we use the Hamming similarity for categorical images and the

Euclidean distance for continuous images. With regard to the second point, we

propose the application of the LSH scheme to filter patterns that are likely to

be similar to a given data event, followed by an exhaustive search. This search

is used to find the most similar patterns among the filtered ones and is based

on the RLE similarity calculation when the TI is categorical. Our techniques

can be adapted to work together with different types of simulation paths as

random or raster paths. Here, we explain how they are used with raster paths.

The pseudocode of our method for categorical TIs is presented in Al-

gorithm 5.1.1. Further, we explain how to modify it for handling continuous

TIs. In line 2, the set of hash tables for the LSH scheme is built. The details

of how LSHSIM applies this scheme are given in Sections 3.5.1 and 5.1.1. In

line 3 each pattern of the TI is compressed using the RLE method described in

Section 4.1.1. We adapt the RLE method to calculate the Hamming similarity,

which will be described in Section 5.1.2. We observe that these two lines, 2

and 3, that are computationally expensive, just need to be executed once in

the usual case where multiple realizations are generated.

In line 4, a raster path is defined based on the template size, sizeT, and

the overlap size, sizeOL. In this step, our method chooses a random corner

of the realization as a starting point, as well as a random direction (between

horizontal or vertical), to generate the path. For each location u defined along

the path, the corresponding data event dataEventu is extracted from the

realization R and then the search phase of the LSH scheme is executed (lines 6

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 56

and 7) so that the set cand, which is supposed to contain patterns similar

to dataEventu, is obtained. Note that the size of this set cand is limited

to at most the value of α times the number of TI patterns, where α is a

positive value smaller than 1. If this set is not empty, the Hamming similarity

is calculated between the data event and each of the filtered patterns using the

RLE approach (lines 8 - 9). Otherwise, the same approach is applied over the

compressed TI, considering only a fraction α of all the patterns of the TI (lines

10 - 12), thus reducing the search space. In both cases, the subset bestCand,

containing the maxCandidates most similar candidates, is obtained. Finally, in

lines 13 and 14, a random pattern from this set is chosen, the MEBC method

is applied to it and the result is pasted in realization at location u. The MEBC

algorithm will be explained in Section 5.1.3. Figure 5.1 provides an overview

of LSHSIM.

For continuous data, the Algorithm 5.1.1 requires some small changes:

line 3 is not executed, because the RLE method does not apply for this case.

Lines 8 and 9 perform a non-compressed search, calculating the Euclidean

distance between the data event and each filtered pattern. Lines 10 - 12 perform

a non-compressed search in the original TI, considering only a fraction α of all

its patterns.

Algorithm 5.1.1: Pseudocode for LSHSIM

Result: Realization R

1 LSHSIM (ti, sizeT, sizeOL, maxCandidates, K, L, α)
2 PreprocessLSH(ti, sizeT, sizeOL, K, L)
3 compressedTI ← PreprocessRLE(ti, sizeT, sizeOL)
4 path ← generateRasterPath(sizeT, sizeOL)
5 for each location u ∈ path do
6 dataEventu ← R(u)
7 cand ← applyLSH(dataEventu, K, L, α)
8 if cand 6= ∅
9 bestCand ← exhaustiveSearchCandidatesSet(dataEventu,

cand, maxCandidates)
10 else
11 bestCand ← exhaustiveSearchTrainingImage(dataEventu,

compressedTI, α, maxCandidates)
12 end if
13 chosenPat ← drawRandom(bestCand)
14 R(u) ← applyMEBC(chosenPat)
15 end for
16 return R

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 57

Figure 5.1: General structure of LSHSIM.

5.1.1
Filtering Patterns via LSH

In the preprocessing phase (line 2 of Algorithm 5.1.1), LSHSIM builds

3 sets of LSH tables as explained in Section 3.5. Each set corresponds to

one of the 3 possible types of overlap regions described in Tahmasebi et al.

(2012). Thus, for each pattern of a given size in the TI, the method extracts

three regions and inserts each of them in the corresponding set of LSH tables.

Figure 5.2 illustrates this phase using a TI with two facies (black and white),

template size of 5 × 5 and overlap size of 2. The second image, from left to

right, is an arbitrarily chosen pattern, say P , from the TI. On its right side,

we have three images, in each of them the non-gray values represent a possible

overlap area of P . These areas are inserted in the corresponding LSH table.

In the search phase (line 7 of Algorithm 5.1.1), it first verifies the type

of overlap of the data event dataEventu and then search in the corresponding

set of LSH tables, such as illustrated in Figure 5.3. In order to speed up the

search, the size of the returned set, cand, is limited by a fraction α of all

possible patterns of the TI.

It can be proved that the probability of including a pattern P in the set

cand (line 7) is given by

1− (1− Sim(P, dataEventu)
K)L

Thus, K and L shall be defined in order to guarantee that patterns similar

(non-similar) to dataEventu have a large (small) probability of being included

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 58

Figure 5.2: Preprocessing phase of LSHSIM.

Figure 5.3: Search phase of LSHSIM.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 59

in cand. As an example, by setting K = 10 and L = 30, the probability of

including a pattern with similarity 0.8 is 95% while the probability of including

a pattern with similarity 0.5 is less than 3%.

The extension of LSHSIM to 3D TIs makes use of 7 sets of LSH tables,

each set corresponding to one of the 7 possible types of overlap regions that

exist in three-dimensional patterns. Apart from that, the preprocessing and

search phases proceed analogously as described above.

We first preprocess the TI, so as to compress it following the RLE

approach. In fact, we compress each block of the image and store it, where

a block corresponds of a submatrix of The TI iif The image describes this

step.

5.1.2
Computing Hamming Similarity via RLE

We adapted the method of Section 4.1.1 to calculate the Hamming

similarity, instead of the convolution. In this sense, the preprocessing phase

is the same as described, but the convolution phase has small modifications

which we now describe. We now preprocess a data event D to obtain a 3-

dimensional structure Sum where Sum[f, i, j] stores the number of times facie

f occurs between the i-th and the j-th position of D. Then, the Hamming

similarity between a data event D and a pattern P , with RLE representation

{(c1, v1), . . . , (ck, vk)}, is given by:

HammingSimilarity(P,D) =
k∑

i=1

Sum

[
vi,

i−1∑
j=1

cj,

(
i∑

j=1

cj

)
− 1

]
.

The computation of the Hamming similarity between a data event D and

each pattern in a given list (P1, . . . , Pm) is made in O(|D| +
∑m

i=1 p
R
i), where

|D| is the size of D and pRi is the size of the RLE representation for Pi.

As an example, the Figure 5.4 exhibits a small TI, with facies 0 and 1,

and a pattern P of size 4 × 4 delimited by the red dashed line. If we scan P

following a horizontal continuous path, its RLE is {(5, 1), (3, 0), (3, 1), (5, 0)},
where the first value in each pair denotes the number of repetitions and the

second one denotes the facie. The Hamming similarity between the data event

D and the pattern P is given by:

HammingSimilarity(P,D) = Sum[1, 0, 4]+Sum[0, 5, 7]+Sum[1, 8, 10]+Sum[0, 11, 15] = 8

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 60

Figure 5.4: An example TI, a possible pattern P and a data event D.

5.1.3
Minimum Error Boundary Cut

The Minimum Error Boundary Cut (MEBC) was first proposed by Efros

& Freeman (2001) in the Image Quilting method. It is used by the majority

of recent pattern-based methods which perform a raster path and we also

employ it in LSHSIM. This method is applied when a pattern is pasted in the

realization, so as to find an optimal boundary cut in the overlap region that

maximizes the image’s continuity.

Figure 5.5 on top shows two patterns P1 and P2, from a given training

image, of size T × T and their overlap regions, delimited by the red line, of

size T ×OL. Then, Figure 5.6 exhibits a näıve pasting, i.e., without using the

MEBC method, of pattern P2 over the overlap region of P1, and a pasting of

both patterns employing MEBC, where the boundary cut obtained is denoted

by the green line. In both cases, an image of size T × (2T − OL) is obtained.

Therefore, in the overlap region of the pasting with MEBC, values to the left

of the boundary cut belong to pattern P1 and values to the right come from

pattern P2. It is possible to verify that the use of the MEBC method corrected

some discontinuities in the channels on top and on bottom of the image.

Typically, if a pattern-based method that performs a raster path does

not employ MEBC, the realizations tend to be patchy, where one can notice

the effect of rectangular shapes in the pasting areas. In addition to this benefit

of improving the realization’s continuity, the fact that the patches are cut and

assembled in a coherent manner results in new patterns being created, whereas

most MPS algorithms are limited to only using the patterns present in the TI

(Mahmud et al., 2014).

The pseudocode of MEBC is described in Algorithm 5.1.2. This algorithm

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 61

is based on the dynamic programming (DP) strategy (Cormen et al., 2009)

and it has complexity O(T × OL). We describe it for vertical overlaps, but

the adaptation for horizontal overlaps is straightforward. When there is both

a vertical and a horizontal overlap, the overall minimum is chosen for the cut

in the shared area.

In line 2, an error surface e is defined corresponding to the squared

difference of the overlap regions of patterns P1 and P2, having a rectangular

size T ×OL, such as depicted by the bottom of Figure 5.5. The DP minimizes

this error surface, computing the cumulative minimum error E over the overlap

region (lines 3 - 15). The DP recurrence (lines 5 - 12) defines the value of Ei,j

equals to ei,j if it’s the first row; otherwise, the value of Ei,j is obtained using

the 3 closest pixels on the previous row (or only 2, if it’s on an edge of the

overlap region). Line 16 retrieves the minimum value of the last row of E,

which is the arrival point of a cut of minimum cost. Finally, in line 17, it goes

backward from this arrival point and traces back the minimum value for each

row, thus recovering the minimum cut.

Algorithm 5.1.2: Pseudocode for MEBC

Result: Minimum error cut minCut
1 MEBC (P1, P2, T , OL)
2 e← (P ol

1 − P ol
2)2

3 for i← 1, . . . , T do
4 for j ← 1, . . . , OL do
5 if i = 1
6 Ei,j ← ei,j
7 else if j = 1
8 Ei,j ← ei,j + min{Ei−1,j, Ei−1,j+1}
9 else if j = OL

10 Ei,j ← ei,j + min{Ei−1,j−1, Ei−1,j}
11 else
12 Ei,j ← ei,j + min{Ei−1,j−1, Ei−1,j, Ei−1,j+1}
13 end if
14 end for
15 end for
16 minCut(T)← min

j
{ET,j} 1 ≤ j ≤ OL

17 traceBack(T , E, minCut)
18 end for
19 return minCut

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 62

Figure 5.5: Two patterns, their overlap regions and obtained minimum bound-
ary cut.

5.1.4
Conditioning

We adapted LSHSIM so as to consider conditioning data. In this sense,

we introduced an additional filter when searching for a given data event. After

applying the LSH scheme and obtaining the set of candidate patterns, we filter

this set to those patterns which honor all the hard data associated with the

data event. Finally, we perform a RLE based search in this reduced set of

candidates, looking for the most similar ones to the data event in the overlap

region. In case this reduced set of candidate patterns is empty, we perform a

RLE search in the training image.

It shall be noted that, in order to avoid low quality realizations, the α

parameter should be increased with respect to unconditional simulations, since

we now have this additional filter that restricts the set of candidate patterns

to those which honor the hard data.

The experiments performed showed that LSHSIM is able to achieve good

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 63

Figure 5.6: Comparison of a näıve pasting and a pasting employing MEBC.

quality realizations while honoring conditioning points. The computational

times are higher than those for unconditional realizations due to the increased

value of α used. These experiments are described in details in Section 5.2.4.

5.2
Experimental Study

In our experiments, we considered a set of four 2D and three 3D

TIs available in (TrainingImagesLibrary, 2016), which is a repository of TIs

associated with the book of Mariethoz & Caers (2014), so as to evaluate

our proposed solution. The images are presented in Figure 5.7, while their

main properties are described in Table 5.1. The image (A) is the well known

TI proposed by Strebelle (2002), while the image (C) is a ternary and less

compressible one. The Stonewall image (D) was selected to validate our method

with continuous data. Lastly, the images (E), (F) and (G) are categorical 3D

TIs used to validate our method with 3D models.

All experiments were executed under the following settings of hardware

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 64

Figure 5.7: Training images adopted in our experiments: available in
(TrainingImagesLibrary, 2016).

and software: Intel Core i7-3960X CPU @ 3.30GHz running Windows 7 64

bits, with 32 GB of memory. All codes of our method were implemented in

C++ and compiled using Visual Studio 2015 update 1. Regarding the MS-

CCSIM method, we adopted the following strategy: we used the MATLAB

code available in (MS-CCSIM, 2016) to generate realizations and we also

implemented a version in C++, employing the OpenCV library version 2.4.11

(OPENCV, 2016), in order to compare its computational time with LSHSIM’s

time. Note that this library is an optimized code belonging to the computer

vision area, having very efficient implementations for some of the techniques

required to implement MS-CCSIM as the fast Fourier transform (FFT) and

multi-scale algorithms.

For parametrization of the MS-CCSIM method, both in MATLAB and

C++ implementations, we set the number of scales to 3, which is the highest

in its MATLAB code. Regarding LSHSIM, when dealing with categorical TIs,

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 65

TI Image size Dimensions Type
(A) Strebelle 250× 250 2D Binary

(B) Bangladesh 768× 243 2D Binary
(C) C Wlticat 400× 400 2D Ternary
(D) Stonewall 200× 200 2D Continuous
(E) Checker 50× 50× 50 3D Binary

(F) Fold Categorical 180× 150× 120 3D Binary
(G) Maules Creek 340× 200× 80 3D Binary

Table 5.1: Main properties of the images used for the experimental study.

we defined L and K, the LSH parameters, to 30 and 10, respectively. On the

other hand, for continuous TIs, we set L and K to 30 and 8, respectively. For

both methods, we also set maxCandidates, which is the number of most similar

patterns returned in a search, to 10, while varying template and overlap sizes

according to the experiment being made.

To determine a suitable value of the α parameter, that is to say, the one

that achieves a good balance between computational time and realization’s

quality, we performed several experiments for different configurations of tem-

plate and overlap sizes. We end up with α equals to 0.5% for categorical 2D

TIs, 1% for categorical 3D TIs and 5% for the continuous 2D TI. We perform

a sensitivity analysis of the α parameter, as well as L and K, in Section 5.2.5.

Both MATLAB and C++ implementations of MS-CCSIM apply the

MEBC approach to the patchiness problem.

5.2.1
CPU performance

In this subsection, we evaluate the performance of our method regard-

ing the computational time for generating unconditional realizations. More

specifically, for each TI under consideration, we generated 20 realizations for

different configurations of template and overlap sizes.

We then measured the time taken for performing each realization and

calculated its average. For 2D categorical TIs, we compare the performance

of LSHSIM with our implementation of the MS-CCSIM in C++. Table 5.2

shows these times in milliseconds, where the best one for each configuration is

in bold.

For binary images, LSHSIM was able to outperform MS-CCSIM by a

factor of approximately 7 on average. The difference was bigger for the Strebelle

image, the most compressible one, for which our method was 8 times faster.

Regarding the ternary one, our method was 3.70 times faster than MS-CCSIM

on average, ranging from 2.19 to 6.35 times. This difference is explained by

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 66

Image Real. size Temp. size Overlap LSHSIM MS-CCSIM Ratio

Strebelle 256× 256 16× 16 4 11.85 106.62 9.00

Strebelle 256× 256 32× 32 4 3.82 29.40 7.70

Strebelle 256× 256 32× 32 8 4.91 36.34 7.40

Strebelle 400× 400 16× 16 4 29.64 262.31 8.85

Strebelle 400× 400 32× 32 4 9.59 71.68 7.47

Strebelle 400× 400 32× 32 8 12.79 93.60 7.32

Bangladesh 256× 256 16× 16 4 32.29 272.92 8.45

Bangladesh 256× 256 32× 32 4 11.46 56.86 4.96

Bangladesh 256× 256 32× 32 8 14.11 70.90 5.02

Bangladesh 400× 400 16× 16 4 78.78 671.19 8.52

Bangladesh 400× 400 32× 32 4 28.47 139.93 4.91

Bangladesh 400× 400 32× 32 8 35.88 183.92 5.13

C Wlticat 256× 256 16× 16 4 40.17 254.90 6.35

C Wlticat 256× 256 32× 32 4 23.08 50.46 2.19

C Wlticat 256× 256 32× 32 8 26.36 65.98 2.50

C Wlticat 400× 400 16× 16 4 100.38 597.56 5.95

C Wlticat 400× 400 32× 32 4 55.53 130.02 2.34

C Wlticat 400× 400 32× 32 8 58.81 169.96 2.89

Table 5.2: Average realization time in milliseconds for 2D categorical images.

the fact that these images are less compressible and hence each exhaustive

search, which uses the RLE similarity calculation, takes longer. In summary,

LSHSIM was about one order of magnitude faster than MS-CCSIM concerning

all categorical TIs. We shall note that we are not taking into account the

preprocessing time in this specific evaluation.

Table 5.3 exhibits, for the same configurations, the preprocessing time

required for building the LSH data structure and applying the RLE compres-

sion to the training image. This preprocessing time is on average equivalent to

the time of 48 realizations, which yields a non-negligible overhead for applic-

ations that only require the generation of a few realizations. For applications

that involve a large number of simulations the preprocessing time of LSHSIM

becomes almost irrelevant. The results of the experiments discussed so far,

with MS-CCSIM and LSHSIM, suggest that the latter outperforms the former

for applications where more than a dozen of realizations have to be generated.

Moreover, the larger the number of realizations the larger is the advantage

towards LSHSIM.

With regard to 2D continuous data, we do not compare our method

with MS-CCSIM, since the latter does not deal with this kind of variable.

In this sense, Table 5.4 exhibits, for the same configurations as above, the

preprocessing and realization times in milliseconds using LSHSIM for the

Stonewall TI. It can be noted that our method was able to obtain satisfactory

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 67

Image Real. size Temp. size Overlap Preprocessing time

Strebelle 256× 256 16× 16 4 418.08

Strebelle 256× 256 32× 32 4 510.90

Strebelle 256× 256 32× 32 8 519.48

Strebelle 400× 400 16× 16 4 426.66

Strebelle 400× 400 32× 32 4 509.34

Strebelle 400× 400 32× 32 8 520.26

Bangladesh 256× 256 16× 16 4 1460.95

Bangladesh 256× 256 32× 32 4 1948.45

Bangladesh 256× 256 32× 32 8 1878.25

Bangladesh 400× 400 16× 16 4 1469.53

Bangladesh 400× 400 32× 32 4 1909.45

Bangladesh 400× 400 32× 32 8 1853.29

C Wlticat 256× 256 16× 16 4 1835.35

C Wlticat 256× 256 32× 32 4 2666.06

C Wlticat 256× 256 32× 32 8 2737.04

C Wlticat 400× 400 16× 16 4 1830.67

C Wlticat 400× 400 32× 32 4 2650.46

C Wlticat 400× 400 32× 32 8 2695.7

Table 5.3: Preprocessing time in milliseconds for 2D categorical images.

realization times for this continuous TI.

Image Real. size Temp. size Overlap Preproc. time Real. time

Stonewall 256× 256 16× 16 4 4034.97 101.40

Stonewall 256× 256 32× 32 4 6442.84 31.98

Stonewall 256× 256 32× 32 8 9906.84 67.08

Stonewall 400× 400 16× 16 4 4197.21 278.46

Stonewall 400× 400 32× 32 4 6364.06 79.56

Stonewall 400× 400 32× 32 8 9773.46 180.18

Table 5.4: Preprocessing and realization times in milliseconds for continuous
image.

Finally, Table 5.5 gives the preprocessing and realization times in seconds

obtained by applying LSHSIM to the 3D categorical TIs for some selected

configurations. These times are three to four orders of magnitude larger than

the ones exhibited in Table 5.2 for 2D images. However, this is not surprising

since the sizes of the 3D realizations are about two to three orders of magnitude

larger than the ones for 2D images. We shall remark that, for these 3D images,

the preprocessing time of our method is generally much smaller than the time

taken for performing a single realization.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 68

Image Real. size Temp. size Overlap Preproc. time Real. time

Checker 256× 256× 256 10× 10× 10 2 1.88 3.88

Checker 256× 256× 256 12× 12× 12 4 1.84 5.67

Checker 256× 256× 256 16× 16× 16 4 1.53 2.69

Checker 400× 400× 400 10× 10× 10 2 1.89 15.37

Checker 400× 400× 400 12× 12× 12 4 1.85 22.43

Checker 400× 400× 400 16× 16× 16 4 1.52 10.24

Fold Categorical 256× 256× 256 10× 10× 10 2 76.82 165.75

Fold Categorical 256× 256× 256 12× 12× 12 4 81.18 221.04

Fold Categorical 256× 256× 256 16× 16× 16 4 91.99 102.85

Fold Categorical 400× 400× 400 10× 10× 10 2 74.20 651.95

Fold Categorical 400× 400× 400 12× 12× 12 4 71.09 804.84

Fold Categorical 400× 400× 400 16× 16× 16 4 84.47 394.16

Maules Creek 256× 256× 256 10× 10× 10 2 128.76 379.24

Maules Creek 256× 256× 256 12× 12× 12 4 143.82 467.81

Maules Creek 256× 256× 256 16× 16× 16 4 188.30 242.48

Maules Creek 400× 400× 400 10× 10× 10 2 145.97 1588.56

Maules Creek 400× 400× 400 12× 12× 12 4 153.37 1937.34

Maules Creek 400× 400× 400 16× 16× 16 4 172.87 877.82

Table 5.5: Preprocessing and realization times in seconds for 3D images.

5.2.2
Realization’s quality

We now analyse LSHSIM concerning simulation’s quality. For this pur-

pose, we compare LSHSIM’s simulations with MS-CCSIM’s for the configur-

ations defined in the last section. In addition, we also show realizations of

MS-CCSIM using only 1 scale, since it improves its quality, although at the

cost of increasing the computational time by a factor of approximately 10 with

respect to the times presented in the previous section.

Figure 5.8 (A), (B) and (C) shows two realizations generated with

LSHSIM, MS-CCSIM with 3 scales and MS-CCSIM with 1 scale, respectively,

for the Strebelle TI. Each realization has 256 × 256 pixels, template size of

32 × 32 and overlap of 4. Moreover, Figure 5.9 (A), (B) and (C) shows two

realizations for the Bangladesh TI using LSHSIM, MS-CCSIM with 3 scales

and MS-CCSIM with 1 scale, respectively. Both have 256 × 256 pixels, and

they were generated using template size of 32× 32 and overlap size of 4. Note

that these images are resized to better fit the thesis.

For these two binary TIs, Strebelle and Bangladesh, we notice that LSH-

SIM generated realizations with good quality, in the sense that it reproduced

well the spatial continuity of the TIs. Both LSHSIM and MS-CCSIM gen-

erated realizations containing low level of patchiness, since they employ the

minimum-error boundary cut approach.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 69

Figure 5.8: Unconditional realizations for the TI of Fig. 5.7 (A): using LSHSIM
(A), using MS-CCSIM with 3 scales (B) and using MS-CCSIM with 1 scale
(C).

Figure 5.10 (A), (B) and (C) presents two realizations generated with

LSHSIM, MS-CCSIM with 3 scales and MS-CCSIM with 1 scale, respectively,

for the C Wlticat image, setting the realization size to 400 × 400 pixels,

template size to 16× 16 and overlap to 4. Again, LSHSIM was able to achieve

a good quality, that is to say, representing well the image’s characteristics.

To sum up, the simulations of both LSHSIM and MS-CCSIM are im-

proved when the MEBC correction is applied, as it can be seen by the low

level of patchiness obtained. We shall note, however, that the application of

MEBC has a bigger impact in MS-CCSIM’s realizations, since LSHSIM’s sim-

ulations naturally present a lower level of patchiness even when the MEBC is

not used.

LSHSIM was also able to produce realizations with good quality for

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 70

Figure 5.9: Unconditional realizations for the TI of Fig. 5.7 (B): using LSHSIM
(A), using MS-CCSIM with 3 scales (B) and using MS-CCSIM with 1 scale
(C).

continuous data. In this sense, Figure 5.11 (B) and (C) shows two realizations

generated with LSHSIM for the Stonewall TI (A). Each of them has 256× 256

pixels, template size of 16× 16 and overlap of 4. One can notice that LSHSIM

was able to express well the TI’s spatial continuity.

Finally, LSHSIM was also successful for 3D images. Figure 5.12 presents

realizations for the Checker TI (A), for the Fold Categorical TI (B) and for the

Maules Creek TI (C), setting the realization size to 256× 256× 256, template

size to 16 × 16 × 16 and overlap size to 4. Analogously, Figure 5.13 exhibits

realizations for the same TIs with 400 × 400 × 400 pixels, template size of

16× 16× 16 and overlap of 4.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 71

Figure 5.10: Unconditional realizations for the TI of Fig. 5.7 (D): using
LSHSIM (A), using MS-CCSIM with 3 scales (B) and using MS-CCSIM with
1 scale (C).

Figure 5.11: Unconditional realizations using LSHSIM for continuous data: the
Stonewall TI (A) and two generated realizations (B) and (C).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 72

Figure 5.12: Unconditional realizations using LSHSIM for 3D data: for the
Checker TI (A), for the Fold Categorical TI (B) and for the Maules Creek TI
(C).

Figure 5.13: Unconditional realizations using LSHSIM for 3D data: for the
Checker TI (A), for the Fold Categorical TI (B) and for the Maules Creek TI
(C).

5.2.3
Comparing uncertainty space

We now analyse our uncertainty space following the analysis of distance

(ANODI) method proposed by Tan et al. (2014). It is a way of comparing

different algorithms and composing a rank, following two criteria: (i) pattern

reproduction, given by the distance between realizations and TIs; and (ii) space

of uncertainty, which is the distance between realizations.

We focus on ANODI’s visual approach, which consists of the MDS

technique with the Jensen-Shannon divergence as a measure of distance. It

represents the realizations and the TI as points in a two or three-dimensional

space, where the relative distances between each realization and the TI are

preserved as much as possible. We used a MATLAB implementation of ANODI

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 73

available in (ANODI, 2016).

We generated 50 realizations with both methods for two TIs. Figure 5.14

shows the MDS plot for the Strebelle TI with the following settings: realization

size of 256 × 256 pixels, template size of 32 × 32 and overlap of 4. Similarly,

Figure 5.15 shows the MDS plot for C Wlticat, which is a ternary image, using

a realization of 400× 400 pixels, a template size of 16× 16 and an overlap of

4. In each plot, the black dot denotes the TI, while the green and blue points

represent realizations generated with LSHSIM and MS-CCSIM, respectively.

The numbers close to some points indicate the rank of that realization, among

the ones generated by the same method, with respect to the distance to the

TI in the original space. Note that the axis are not shown because the focus

is on the relative distances between points.

Figure 5.14: MDS plot illustrating the variability of LSHSIM and MS-CCSIM
methods by using the TI in Fig. 5.7 (A).

One can observe that, for Figure 5.14, LSHSIM achieved a good pattern

reproduction such that its realizations are close to the TI. In addition,

both LSHSIM and MS-CCSIM had similar spreading of their realizations.

Concerning the plot depicted in Figure 5.15, LSHSIM generated realizations

close to the TI, thus reproducing well the TI patterns. Again, both methods

had a similar variability, since LSHSIM’s space of uncertainty is almost as large

as MS-CCSIM’s.

5.2.4
Conditioning

We also investigated the impact of conditioning on LSHSIM. Following

the approach of Yang et al. (2016), we randomly selected 20 points from the

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 74

Figure 5.15: MDS plot exposing the variability of both methods by using the
TI in Fig. 5.7 (C).

Strebelle TI to be used as hard data, ensuring that at least 1/3 of these points

corresponded to channel facies (white values). Figure 5.16 shows the TI (A)

and its selected points (B). We then generated 100 conditional realizations

with LSHSIM for some selected configurations, setting L = 30 and K = 10.

The α parameter was set to 15%, which is a higher value than the one used

in unconditional realizations, such as explained in Section 5.1.4. Table 5.6

summarizes the average preprocessing and realization times, in milliseconds,

obtained for these experiments.

Figure 5.16: Strebelle TI (A) and selected conditioning points (B).

For the configuration having realization size of 256×256 pixels, template

size of 32 and overlap of 4, Figure 5.17 exhibits three conditional realizations.

Besides, Figure 5.18 shows the ensemble average scaled to the interval [0, 1] of

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 75

Image Real. size Temp. size Overlap Preproc. time Real. time

Strebelle 256× 256 16× 16 4 428.53 162.07

Strebelle 256× 256 32× 32 4 519.64 55.20

Strebelle 256× 256 32× 32 8 525.56 67.47

Strebelle 400× 400 16× 16 4 438.36 410.00

Strebelle 400× 400 32× 32 4 518.39 132.99

Strebelle 400× 400 32× 32 8 529.62 173.64

Table 5.6: Preprocessing and realization times in milliseconds for conditional
simulations.

all the 100 generated realizations. It depicts a heat map in which each position

corresponding to a black conditioning point should be close to blue and each

one associated with white conditioning points should be close to red. Therefore,

one can observe that all hard data are consistently honored.

Figure 5.17: Three conditional realizations for the Strebelle TI honoring the
conditioning points from Figure 5.16.

5.2.5
Sensitivity Analysis

In this section, we perform a sensitivity analysis of LSHSIM concerning

the following parameters: α, L and K.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 76

Figure 5.18: Ensemble average obtained for 100 conditional realizations.

Methodology. In order to better understand the effect of each parameter,

three different test batches were performed. In each of them, two of the

parameters were fixed to the values reported in the last subsections (L = 30;

K = 10; α = 0.5%) and the remaining one varied in a range of predefined

values, which will be described in the next subsections.

We generated 20 simulations for every configuration so as to obtain

the average realization time and have more statistically consistent data. All

experiments used the Strebelle TI, adopting a realization of 256× 256 pixels,

pattern size of 32× 32 and overlap of 4.

Parameter α. This parameter, which is a value between 0 and 100, serves

as a threshold to limit the size of the set of candidate patterns, that is, the

set returned by the LSH structure, in which the (RLE based) search for a

good/optimal pattern is performed. If α = U then at most U% of the patterns

in the training image can be considered in this search. Thus, α has a great

influence in the query time and, consequently, in the realization time.

In order to perform this experiment, we have chosen the following

values for α: {0.05%; 0.1%; 0.3%; 0.5%; 1%; 3%; 5%; 10%}. Figures 5.19 and

5.20 exhibit the realization time in milliseconds and number of candidates

obtained, respectively, for the predefined values of α. As expected, the larger

the value of α the larger is the realization time and the number of candidates

considered in the search. This parameter, in contrast with L and K, has no

influence in the preprocessing time.

With respect to realization’s quality, Figure 5.21 shows some examples of

realizations for different values of α. There is a noticeable decrease in quality

as α assumes lower values. This is explained by the fact that less candidate

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 77

Figure 5.19: Realization time in milliseconds obtained as α varies.

Figure 5.20: Number of candidates per query obtained as α varies.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 78

patterns are considered and consequently a worse pattern can be chosen. On

the other hand, as alpha increases, the quality of produced realizations gets

better, since a larger number of patterns is considered as candidates and we

tend to choose a good one. Finally, setting α = 0.5% seems to be a good

balance between quality and time.

Figure 5.21: Examples of realizations performed setting α to the following
values: 0.05% (A), 0.5% (B) and 10% (C).

Parameter L. The L parameter represents the number of hash tables used

in the LSH structure. When searching for a pattern similar to a given data

event, each one of the L hash tables are accessed and the candidates retrieved

from each of them are joined to form the candidate set, in which the search

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 79

for a good pattern is executed. In order to test LSHSIM’s sensitivity, we have

chosen the following values for L: {1; 10; 15; 20; 25; 30; 35; 40; 45; 50}.
Figures 5.22, 5.23 and 5.24 illustrate the preprocessing time in milli-

seconds, realization time in milliseconds and number of candidates obtained,

respectively, for simulations performed with the predefined values of L.

Figure 5.22: Preprocessing time in milliseconds obtained as L varies.

Figure 5.23: Realization time in milliseconds obtained as L varies.

As expected, the preprocessing time increases with the growth of L since

more hash tables have to be created and populated. With respect to realization

times, no clear tendency can be observed, supposedly indicating that no direct

relation must exist here. However, it can be also noticed that the number of

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 80

Figure 5.24: Number of candidates per query obtained obtained as L varies.

candidates found reaches a limit, which is exactly the restriction imposed by

the α parameter. This explains the lack of tendency.

To have a better understanding of the effect of L on the realization time,

the results for a bigger α (10%) are shown in Figure 5.25 and Figure 5.26. The

motivation is to minimize the impact of the α parameter in the algorithm. In

this new scenario, it can be observed that the realization time increases with

the growth of L and then it stabilizes for L around 20. This happens, once

again, due to the constraint imposed by parameter α.

Figure 5.25: Realization time in milliseconds obtained as L varies having
α = 10%.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 81

Figure 5.26: Number of candidates per query obtained as L varies having
α = 10%.

Figure 5.27 shows some examples of realizations for three different values

of L. It can be observed a gain in realization’s quality as L is increased. This

is not surprising since the set of candidates gets bigger when L gets larger.

Finally, L = 30 seems to provide a good balance between realization’s quality

and computational time.

Parameter K. In the LSH structure, K represents the number of values from

the overlap region that are used in the similarity’s calculation.

Figures 5.28, 5.29 and 5.30 exhibit the preprocessing time in milliseconds,

realization time in milliseconds and number of candidates obtained, respect-

ively, for simulations performed with the predefined values of K.

Again, as one could expect, the preprocessing time increases with the

growth of K due to the extra work to insert each one of the TI patterns in

the hash tables of the LSH structure. Regarding the realization time no clear

trend can be observed. The α parameter is once again having an impact on

these times since it is limiting the number of candidates. Note that number of

candidates for all values of K in Figure 5.30 are very close despite of the shape

of the curve.

In order to have a better understanding and minimize the effect of α

in the simulations, the results for a bigger value of α (10%) are presented

in Figures 5.31 and 5.32. In these results, the limit imposed by α affects the

number of candidates for K smaller or equal than 10. Beyond this value, the

number of candidate patterns is not affected by α, since LSH becomes more

selective and returns a smaller quantity of patterns.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 82

Figure 5.27: Examples of realizations performed setting L to the following
values: 1 (A), 30 (B) and 50 (C).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 83

Figure 5.28: Preprocessing time in milliseconds obtained as K varies.

Figure 5.29: Realization time in milliseconds obtained as K varies.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 84

Figure 5.30: Number of candidates per query obtained obtained as K varies.

Figure 5.31: Realization time in milliseconds obtained as K varies having
α = 10%.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 85

Figure 5.32: Number of candidates per query obtained as K varies having
α = 10%.

Figure 5.33 shows some examples of realizations for three different values

of K. For lower values of K, the quality of realizations is poor since LSH cannot

distinguish well between patterns, thus being less selective. On the other hand,

for higher values of K, LSH returns more refined results. Finally, K = 10

generates good quality realizations in a reasonable computational time.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 86

Figure 5.33: Examples of realizations performed setting K to the following
values: 1 (A), 10 (B) and 20 (C).

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

6
Conclusions

6.1
Final Considerations

Multiple-point simulation has proved to be a very important method-

ology that provides a variety of techniques to model reservoirs and simulate

possible scenarios. In this sense, motivated by reducing the time taken to gener-

ate realizations, the methods evolved from a pixel-based approach, which were

typically slow and presented bad quality realizations, to pattern-based ones,

dealing with a group of pixels in each step. Pattern-based methods use spe-

cialized techniques to cope with the dimensionality of patterns in an efficient

way.

In this thesis, we first addressed the problem of searching for the

most similar patterns when performing a realization. For this purpose, we

proposed the use of compression techniques to accelerate the computation of

convolutions. We have performed an investigation of the potential of RLE

and LZ based methods for efficiently calculating convolutions of patterns of a

fixed size and a given image, proposing new methods and variants of existing

ones. Our experimental study indicated that the RLE method, the fastest one,

outperformed a highly optimized implementation of the FFT algorithm for

patterns up to a certain size.

On top of everything, we presented LSHSIM, a new and fast method to

generate realizations that are based on the characteristics of a given training

image. The method introduces new ideas to accelerate the simulation process

such as the use of the LSH technique and the RLE based similarity computa-

tion. Experiments carried over a set of 7 selected TIs indicate that LSHSIM is

almost one order of magnitude faster than MS-CCSIM for categorical images.

In addition, the quality of our realizations is competitive with those generated

by MS-CCSIM, in the sense that the spatial continuity of the TIs was well

expressed. Our MDS plots depicted that LSHSIM’s space of uncertainty has a

good spread and the realizations are close to the TI.

To assert the extensibility of LSHSIM to continuous data, we have applied

our method to a continuous TI and obtained good results regarding time and

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 88

quality of simulations. In this case, the RLE approach shall not be used and

the LSH scheme should be based on the Euclidean distance instead of the

Hamming distance. Besides, we also extended the LSHSIM method to 3D TIs.

In this sense, we have applied LSHSIM for some selected 3D TIs and the

obtained results were also satisfying, taking into consideration the time and

quality of the realizations produced.

6.2
Future Works

The following topics are considered as interesting future works:

1. An ongoing research consists of adapting LSHSIM to work with a new

concept called cost matrix, which is a more general way of modeling the

similarity between patterns. These matrices express, for each possible

pair of facies i and j, the cost of replacing a facie i from a data event

with a facie j from a pattern, or vice-versa. Note that the purpose is to

let a specialist, such as a geologist, define its values according to a specific

semantic of the region being studied. Therefore, we aim to explore how

to integrate the cost matrix into the LSH approach;

2. Integrate the hard data concept into the LSH approach, such that the

adopted similarity measure prioritizes these data when filtering patterns

in a search;

3. Explore the approach proposed by Lv et al. (2007) in the multi-probe

LSH, which permits to use a fewer number of hash tables, when dealing

with applications which contain space constraints. To achieve this, when

performing a search, the method applies a perturbation scheme to the

query q, so as to probe other buckets from the same hash table. The

property of LSH guarantees that objects which are close to q, but not

hashed to the same bucket as q, are likely to be in a bucket “close by”.

The method then aims to find these buckets through the application of

perturbations to q;

4. Investigate the use of the LSH technique in the GOSIM method (Yang et

al., 2016), instead of PatchMatch algorithm, such as discussed in Section

2.1.2;

5. Compare LSHSIM’s performance with the recently published work of

Hoffimann et al. (2017), which proposes a new strategy to the problem

and claims to be faster than any other MPS algorithm published so far.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

Bibliography

Abdollahifard, M. J. (2016), ‘Fast multiple-point simulation using a

data-driven path and an efficient gradient-based search’, Comput. Geosci.

86(C), 64–74. DOI 10.1016/j.cageo.2015.10.010. ISSN 0098-3004.

Abdollahifard, M. J. & Nasiri, B. (2017), ‘Exploiting transformation-domain

sparsity for fast query in multiple-point geostatistics’, Computational

Geosciences 21(2), 289–299. DOI 10.1007/s10596-016-9612-1. ISSN

1573-1499.

ANODI (2016), ‘Matlab code of the anodi method’,

https://github.com/SCRFpublic/ANODI. Accessed: 2016-04-10.

Arpat, G. B. & Caers, J. (2007), ‘Conditional simulation with patterns’,

Mathematical Geology 39(2), 177–203. DOI 10.1007/s11004-006-9075-3.

ISSN 1573-8868.

Barnes, C., Shechtman, E., Finkelstein, A. & Goldman, D. B. (2009),

‘Patchmatch: A randomized correspondence algorithm for structural image

editing’, ACM Trans. Graph. 28(3), 24:1–24:11.

DOI 10.1145/1531326.1531330. ISSN 0730-0301.

Borg, I. & Groenen, P. (2005), Modern Multidimensional Scaling: Theory and

Applications, 2 ed., Springer.

Caers, J. (2002), ‘Geostatistical history matching under training-image based

geological model constraints’, Society of Petroleum Engineers.

Caers, J. (2011), Modeling Uncertainty in the Earth Sciences, Wiley.

Chilès, J. P. & Delfiner, P. (2012), Geostatistics: Modeling Spatial

Uncertainty, 2 ed., Wiley, Hoboken, New Jersey.

Cooley, J. M. & Tukey, J. W. (1965), ‘An algorithm for the machine

calculation of complex fourier series’, Math. Comp. 19, 297.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009),

Introduction to Algorithms, Third Edition, 3rd ed., The MIT Press.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 90

Efros, A. A. & Freeman, W. T. (2001), ‘Image quilting for texture synthesis

and transfer’, Proceedings of SIGGRAPH 2001 pp. 341–346.

FFTW (2015), ‘Fastest fourier transform in the west’, http://www.fftw.org.

Accessed: 2015-10-06.

Freschi, V. & Bogliolo, A. (2010), ‘A faster algorithm for the computation of

string convolutions using LZ78 parsing’, Inf. Process. Lett

110(14-15), 609–613.

Frigo, M. & Johnson, S. G. (2005), ‘The design and implementation of

FFTW3’, Proceedings of the IEEE 93(2), 216–231. Special issue on

“Program Generation, Optimization, and Platform Adaptation”.

Gardet, C., Le Ravalec, M. & Gloaguen, E. (2016), ‘Pattern-based

conditional simulation with a raster path: a few techniques to make it more

efficient’, Stochastic Environmental Research and Risk Assessment

30(2), 429–446. DOI 10.1007/s00477-015-1207-1. ISSN 1436-3259.

Gionis, A., Indyk, P., Motwani, R. et al. (1999), Similarity search in high

dimensions via hashing, in ‘Proceedings of the International Conference on

Very Large Data Bases’, number 6, pp. 518–529.

Guardiano, F. B. & Srivastava, R. M. (1993), Geostatistics Tróia ’92: Volume

1, Springer Netherlands, Dordrecht, chapter Multivariate Geostatistics:

Beyond Bivariate Moments, pp. 133–144.

Hamming, R. (1950), ‘Error Detecting and Error Correcting Codes’, Bell

System Technical Journal 29, 147–160.

Hassanieh, H., Indyk, P., Katabi, D. & Price, E. (2012), ‘Simple and

practical algorithm for sparse fourier transform’, SODA pp. 1183–1194.

Hoffimann, J., Scheidt, C., Barfod, A. & Caers, J. (2017), ‘Stochastic

simulation by image quilting of process-based geological models’,

Computers & Geosciences 106, 18 – 32.

DOI http://dx.doi.org/10.1016/j.cageo.2017.05.012. ISSN

0098-3004.

Honarkhah, M. & Caers, J. (2010), ‘Stochastic simulation of patterns using

distance-based pattern modeling’, Mathematical Geosciences 42, 487–517.

Indyk, P. & Motwani, R. (1998), Approximate nearest neighbors: towards

removing the curse of dimensionality, in ‘Proceedings of the thirtieth

annual ACM symposium on Theory of computing’, ACM, pp. 604–613.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 91

Leskovec, J., Rajaraman, A. & Ullman, J. D. (2014), Mining of Massive

Datasets, 2nd ed., Cambridge University Press, New York, NY, USA.

Lv, Q., Josephson, W., Wang, Z., Charikar, M. & Li, K. (2007), Multi-probe

lsh: Efficient indexing for high-dimensional similarity search, in

‘Proceedings of the 33rd International Conference on Very Large Data

Bases’, VLDB ’07, VLDB Endowment, pp. 950–961.

Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P. & Baker, A. (2014),

‘Simulation of earth textures by conditional image quilting’, Water

Resources Research 50(4), 3088–3107. DOI 10.1002/2013WR015069. ISSN

1944-7973.

Mariethoz, G. & Caers, J. (2014), Multiple-point Geostatistics: Stochastic

Modeling with Training Images, 1 ed., Wiley-Blackwell.

Mariethoz, G. & Lefebvre, S. (2014), ‘Bridges between multiple-point

geostatistics and texture synthesis: Review and guidelines for future

research’, Computers & Geosciences 66, 66 – 80.

DOI http://dx.doi.org/10.1016/j.cageo.2014.01.001. ISSN

0098-3004.

Mariethoz, G., Renard, P. & Straubhaar, J. (2010), ‘The direct sampling

method to perform multiple-point geostatistical simulations’, Water

Resources Research 46(11), 1–14. DOI 10.1029/2008WR007621. ISSN

1944-7973, W11536.

MS-CCSIM (2016), ‘Matlab code of the ms-ccsim method’,

https://github.com/SCRFpublic/MS CCSIM. Accessed: 2016-04-10.

OPENCV (2016), ‘Opencv - open source computer vision’,

http://opencv.org. Accessed: 2016-07-15.

Parra, Á. & Ortiz, J. M. (2011), ‘Adapting a texture synthesis algorithm for

conditional multiple point geostatistical simulation’, Stochastic

Environmental Research and Risk Assessment 25(8), 1101–1111.

DOI 10.1007/s00477-011-0489-1. ISSN 1436-3259.

Pyrcz, M. J. & Deutsch, C. V. (2014), Geostatistical Reservoir Modeling,

Oxford university press.

Rytter, W. (2003), ‘Application of Lempel-Ziv factorization to the

approximation of grammar-based compression’, Theoretical Computer

Science 302, 211–222.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 92

Simard, P. Y., Bottou, L., Haffner, P. & LeCun, Y. (1998), Boxlets: A fast

convolution algorithm for signal processing and neural networks, in ‘NIPS’,

pp. 571–577.

Strebelle, S. (2002), ‘Conditional simulation of complex geological structures

using multiple-point statistics’, Mathematical Geology 34(1), 1–21.

DOI 10.1023/A:1014009426274. ISSN 1573-8868.

Tahmasebi, P. & Sahimi, M. (2016a), ‘Enhancing multiple-point geostatistical

modeling: 1. graph theory and pattern adjustment’, Water Resources

Research 52, 2074–2098. DOI 10.1002/2015WR017806. ISSN 1944-7973.

Tahmasebi, P. & Sahimi, M. (2016b), ‘Enhancing multiple-point

geostatistical modeling: 2. iterative simulation and multiple distance

function’, Water Resources Research 52(3), 2099–2122.

DOI 10.1002/2015WR017807. ISSN 1944-7973.

Tahmasebi, P., Hezarkhani, A. & Sahimi, M. (2012), ‘Multiple-point

geostatistical modeling based on the cross-correlation functions’,

Computational Geosciences 16(3), 779–797.

DOI 10.1007/s10596-012-9287-1. ISSN 1573-1499.

Tahmasebi, P., Sahimi, M. & Caers, J. (2014), ‘MS-CCSIM: Accelerating

pattern-based geostatistical simulation of categorical variables using a

multi-scale search in fourier space’, Computers & Geosciences 67, 75–88.

Tan, X., Tahmasebi, P. & Caers, J. (2014), ‘Comparing training-image based

algorithms using an analysis of distance’, Mathematical Geosciences

46(2), 149–169. DOI 10.1007/s11004-013-9482-1. ISSN 1874-8953.

Tanaka, T., I, T., Inenaga, S., Bannai, H. & Takeda, M. (2013), Computing

convolution on grammar-compressed text, in A. Bilgin, M. W. Marcellin,

J. Serra-Sagristà & J. A. Storer, eds, ‘2013 Data Compression Conference,

DCC 2013, Snowbird, UT, USA, March 20-22, 2013’, IEEE, pp. 451–460.

TrainingImagesLibrary (2016), ‘Training images library’,

http://www.trainingimages.org/training-images-library.html. Accessed:

2016-03-02.

Vazirani, V. V. (2001), Approximation algorithms, Springer.

Werman, M. (2003), Fast convolution, in ‘WSCG’.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point
Geostatistics 93

Yang, L., Hou, W., Cui, C. & Cui, J. (2016), ‘Gosim: A multi-scale iterative

multiple-point statistics algorithm with global optimization’, Comput.

Geosci. 89, 57 – 70.

DOI http://dx.doi.org/10.1016/j.cageo.2015.12.020. ISSN

0098-3004.

Zhang, T., Switzer, P. & Journel, A. (2006), ‘Filter-based classification of

training image patterns for spatial simulation’, Mathematical Geology

38(1), 63–80. DOI 10.1007/s11004-005-9004-x. ISSN 1573-8868.

Ziv, J. & Lempel, A. (1978), ‘Compression of individual sequences via

variable rate encoding’, IEEE Trans. Inf. Theory pp. 530–536.

DBD
PUC-Rio - Certificação Digital Nº 1321844/CA

	LSHSIM: A Locality Sensitive Hashing Based Method for Multiple-Point Geostatistics
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Objective
	Organization

	Related Work
	Multiple-Point Geostatistics
	Compression Techniques for Calculating Convolutions

	Background
	Convolution
	Compression
	Some Concepts of Graph Theory
	Distance Measures
	Locality Sensitive Hashing

	Compression Techniques for Computing Convolutions
	Methods
	Experimental Study

	LSHSIM
	Method
	Experimental Study

	Conclusions
	Final Considerations
	Future Works

